
System Software 10CS52

Dept.of CS&E,SJBIT 2

VTU QUESTION PAPER SOLUTION

UNIT 1: MACHINE ARCHITECTURE

1. Give the target address generated for the following machine instruction:

(i) 032600h (ii) 03C300h (iii) 0310C303h if (B)=006000, (PC)=003000, (X)=00090

(DEC 2010/11)

 (i) 032600= 103000

(ii)03C300=00C303

(iii)0310C303=003030

System Software 10CS52

Dept.of CS&E,SJBIT 3

Mnemonic Number Use

A 0 Accu

X 1 Index

L 2 Linka

PC 8 Progr

SW 9 Statu

2. List out the registers used in SIC m/c architecture along with their use. (MAY/JUNE
2010/12)

There are five registers, each 24 bits in length. Their mnemonic, number and use

are given in the following table.

mulator; used for arithmetic operations

register; used for addressing

ge register; JSUB

am counter

s word, including CC

3. Write a sequence of instructions for SIC/XE to set ALPHA= GAMMA *BETA-9. Use
register operation. (MAY/JUNE 2010)

LDA GAMMA

MUL BETA

SUB 9

STA ALPHA

4. Write a program to copy a character string to another char string

LDA #5

STA ALPHA

LDA #90

STCH C1

.

.

System Software 10CS52

Dept.of CS&E,SJBIT 4

ALPHA RESW 1

C1 RESB 1

5. What is system software? Differentiate it from application s/w.(DEC 09/JAN 10)

System software consists of a variety of programs that support the operation of a
computer

System software – support operation and use of computer. Application software -

solution to a problem. Assembler translates mnemonic instructions into machine code.
The instruction formats, addressing modes etc., are of direct concern in assembler
design.

There are aspects of system software that do not directly depend upon the type of

computing system, general design and logic of an assembler, general design and logic of
a compiler and code optimization techniques, which are independent of target machines.
Likewise, the process of linking together independently assembled subprograms does not
usually depend on the computer being used.

6. Give the instruction formats and addressing modes of SIC/XE machine architecture. (DEC
09/JAN 10), (DEC 08/JAN 09)

Instruction Formats:

The new set of instruction formats fro SIC/XE machine architecture are as
follows. Format 1 (1 byte): contains only operation code (straight from table).

Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and
following four for register 2.

The numbers for the registers go according to the numbers indicated at the registers
section (ie, register T is replaced by hex 5, F is replaced by hex 6).

Format 3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last 12
bits contain displacement for the address of the operand. Operation code uses only 6 bits,
thus the second hex digit will be affected by the values of the first two flags (n and i). The
flags, in order, are: n, i, x, b, p, and e. Its functionality is explained in the next section.
The last flag e indicates the instruction format (0 for 3 and 1 for 4).

System Software 10CS52

Dept.of CS&E,SJBIT 5

Format 4 (4 bytes): same as format 3 with an extra 2 hex digits (8 bits) for addresses that
require more than 12 bits to be represented.

Format 1 (1 byte)

8

op

Format 2 (2 bytes)

8 4 4

op r1 r2

Formats 1 and 2 are instructions do not reference memory at all

Format 3 (3 bytes)

6 1 1 1 1 1 1 12

op n i x b p e disp

Format 4 (4 bytes)

6 1 1 1 1 1 1 20

op n i x b p e address

Addressing modes & Flag Bits

Five possible addressing modes plus the combinations are as follows.

• Direct (x, b, and p all set to 0): operand address goes as it is. n and i are both set
to the same value, either 0 or 1. While in general that value is 1, if set to 0 for
format 3 we can assume that the rest of the flags (x, b, p, and e) are used as a part
of the address of the operand, to make the format compatible to the SIC format.

System Software 10CS52

Dept.of CS&E,SJBIT 6

• Relative (either b or p equal to 1 and the other one to 0): the address of the
operand should be added to the current value stored at the B register (if b = 1) or
to the value stored at the PC register (if p = 1)

• Immediate(i = 1, n = 0): The operand value is already enclosed on the
instruction (ie. lies on the last 12/20 bits of the instruction)

• Indirect(i = 0, n = 1): The operand value points to an address that holds the
address for the operand value.

• Indexed (x = 1): value to be added to the value stored at the register x to obtain
real address of the operand. This can be combined with any of the previous modes
except immediate.

The various flag bits used in the above formats have the following meanings

e - > e = 0 means format 3, e = 1 means format 4

Bits x,b,p : Used to calculate the target address using relative, direct, and indexed
addressing Modes

Bits i and n: Says, how to use the target address

b and p - both set to 0, disp field from format 3 instruction is taken to be the target
address. For a x - x is set to 1, X register value is added for target address calculation

i=1, n=0 Immediate addressing, TA: TA is used as the operand value, no memory
reference

i=0, n=1 Indirect addressing, ((TA)): The word at the TA is fetched. Value of TA is taken
as the address of the operand value

i=0, n=0 or i=1, n=1 Simple addressing, (TA):TA is taken as the address of the operand
value

Two new relative addressing modes are available for use with instructions

assembled using format 3.

Mode Indication Target address calculation

Base relative b=1,p=0
TA=(B)+ disp

(0≤disp ≤4095)

System Software 10CS52

Dept.of CS&E,SJBIT 7

Program-counter
relative

b=0,p=1

TA=(PC)+ disp

(-2048≤disp ≤2047)

7. Explain i/o on SIC/XE machine architecture. .(DEC 09/JAN 10/12)

There are I/O channels that can be used to perform input and output while the
CPU is executing other instructions. Allows overlap of computing and I/O, resulting in
more efficient system operation. The instructions SIO, TIO, and HIO are used to start,
test and halt the operation of I/O channels.

Simple data and character movement operation (SIC/XE)

LDA #5

STA ALPHA

LDA #90

STCH C1

.

.

ALPHA RESW 1

C1 RESB 1

8. Explain target address calculation with different addressing modes of SIC/XE machine.
(DEC 07/JAN 08)

Five possible addressing modes plus the combinations are as follows.

1. Direct (x, b, and p all set to 0): operand address goes as it is. n and i are both set

to the same value, either 0 or 1. While in general that value is 1, if set to 0 for

System Software 10CS52

Dept.of CS&E,SJBIT 8

format 3 we can assume that the rest of the flags (x, b, p, and e) are used as a part

of the address of the operand, to make the format compatible to the SIC format.

2. Relative (either b or p equal to 1 and the other one to 0): the address of the

operand should be added to the current value stored at the B register (if b = 1) or

to the value stored at the PC register (if p = 1)

3. Immediate(i = 1, n = 0): The operand value is already enclosed on the

instruction (ie. lies on the last 12/20 bits of the instruction)

4. Indirect(i = 0, n = 1): The operand value points to an address that holds the

address for the operand value.

5. Indexed (x = 1): value to be added to the value stored at the register x to obtain

real address of the operand. This can be combined with any of the previous modes

except immediate.

The various flag bits used in the above formats have the following meanings

e - > e = 0 means format 3, e = 1 means format 4

Bits x,b,p : Used to calculate the target address using relative, direct, and indexed

addressing Modes.

Bits i and n: Says, how to use the target address

b and p - both set to 0, disp field from format 3 instruction is taken to be the target

address. For a format 4 bits b and p are normally set to 0, 20 bit address is the target

address

x - x is set to 1, X register value is added for target address calculation

i=1, n=0 Immediate addressing, TA: TA is used as the operand value, no memory

reference

System Software 10CS52

Dept.of CS&E,SJBIT 9

i=0, n=1 Indirect addressing, ((TA)): The word at the TA is fetched. Value of TA is taken

as the address of the operand value

i=0, n=0 or i=1, n=1 Simple addressing, (TA):TA is taken as the address of the operand

value

Two new relative addressing modes are available for use with instructions assembled

using format 3.

Mode Indication Target address calculation

Base relative b=1,p=0
TA=(B)+ disp

(0≤disp ≤4095)

Program-counter

relative

b=0,p=1

TA=(PC)+ disp

(-2048≤disp ≤2047)

System Software 10CS52

Dept.of CS&E,SJBIT 10

UNIT 2: ASSEMBLER-1

1. Define assembler directive. Explain different types ofdirectives used in SIC. (DEC 2010 /11)

 Basic assembler directives

a) START
b) END
c) BYTE
d) WORD
e) RESB
f) RESW

The assembler functions are:

1) Convert mnemonic operation codes to their machine language equivalents
2) Convert symbolic operands to their equivalent machine addresses .
3) Build the machine instructions in the proper format
4) Convert the data constants to internal machine representations
5) Write the object program and the assembly listing

 A SIMPLE SIC ASSEMBLER FUNCTION :

The translation of source program to object code requires following actions :

• Convert mnemonic codes to their machine language, ex: STL to 14.
• Convert data constants to their internal machine representations, ex: EOF to

454F46.
• Convert the symbolic operands to machine addresses-ex: RETADR to 1033.
• Build the machine instructions in proper format.
• Write object program and assembly listing.
Pseudo-Instructions

g) Not translated into machine instructions

Providing information to the assembler

2b) What is need of pass 2 assembler. Give out the pass 2 algorithm.

Begin

read 1st input line

System Software 10CS52

Dept.of CS&E,SJBIT 11

if OPCODE = ‘START’ then

begin

write listing line

read next input line

end

write Header record to object program

initialize 1st Text record

while OPCODE != ‘END’ do

begin

if this is not comment line then

begin

search OPTAB for OPCODE

if found then

begin

if there is a symbol in OPERAND field then

begin

search SYMTAB for OPERAND field then

if found then

begin

store symbol value as operand address

else

begin

store 0 as operand address

set error flag (undefined symbol)

end

System Software 10CS52

Dept.of CS&E,SJBIT 12

end (if symbol)

else store 0 as operand address

assemble the object code instruction

else if OPCODE = ‘BYTE’ or ‘WORD” then

convert constant to object code

if object code doesn’t fit into current Text record then

begin

Write text record to object code

initialize new Text record

end

add object code to Text record

end {if not comment}

3. Give the algorithm for pass1 of an 2 pass assembler. (MAY/JUNE 2010) (DEC 08/JAN 09)

PASS 1:

Begin

read first input line

if OPCODE = ‘START’ then begin

save #[Operand] as starting addr

initialize LOCCTR to starting address

write line to intermediate file

read next line

end(if START)

else

System Software 10CS52

Dept.of CS&E,SJBIT 13

initialize LOCCTR to 0

While OPCODE != ‘END’ do

begin

if this is not a comment line then

beg

if there is a symbol in the LABEL field then

begin

search SYMTAB for LABEL

if found then

set error flag (duplicate symbol)

else

(if symbol)

search OPTAB for OPCODE

if found then

add 3 (instr length) to LOCCTR

else if OPCODE = ‘WORD’ then

add 3 to LOCCTR

else if OPCODE = ‘RESW’ then

add 3 * #[OPERAND] to LOCCTR

else if OPCODE = ‘RESB’ then

add #[OPERAND] to LOCCTR

else if OPCODE = ‘BYTE’ then

begin

find length of constant in bytes

add length to LOCCTR

System Software 10CS52

Dept.of CS&E,SJBIT 14

end

else

set error flag (invalid operation code)

end (if not a comment)

write line to intermediate file

read next input line

end { while not END}

write last line to intermediate file

Save (LOCCTR – starting address) as program length

End {pass 1}

4. Explain the following
a. SYMTAB
b. OPTAB (MAY/JUNE 2010), (DEC 07/JAN 08/11)

OPTAB:

• It is used to lookup mnemonic operation codes and translates them to their
machine language equivalents. In more complex assemblers the table also
contains information about instruction format and length.

• In pass 1 the OPTAB is used to look up and validate the operation code in the
source program. In pass 2, it is used to translate the operation codes to machine
language. In simple SIC machine this process can be performed in either in pass
1 or in pass 2. But for machine like SIC/XE that has instructions of different
lengths, we must search OPTAB in the first pass to find the instruction length for
incrementing LOCCTR.

• In pass 2 we take the information from OPTAB to tell us which instruction
format to use in assembling the instruction, and any peculiarities of the object
code instruction.

• OPTAB is usually organized as a hash table, with mnemonic operation code as
the key. The hash table organization is particularly appropriate, since it provides

System Software 10CS52

Dept.of CS&E,SJBIT 15

fast retrieval with a minimum of searching. Most of the cases the OPTAB is a
static table- that is, entries are not normally added to or deleted from it. In such
cases it is possible to design a special hashing function or other data structure to
give optimum performance for the particular set of keys being stored.

SYMTAB:

• This table includes the name and value for each label in the source program,
together with flags to indicate the error conditions (e.g., if a symbol is defined in
two different places).

• During Pass 1: labels are entered into the symbol table along with their assigned
address value as they are encountered. All the symbols address value should get
resolved at the pass 1.

• During Pass 2: Symbols used as operands are looked up the symbol table to obtain
the address value to be inserted in the assembled instructions.

• SYMTAB is usually organized as a hash table for efficiency of insertion and
retrieval. Since entries are rarely deleted, efficiency of deletion is the important
criteria for optimization.

• Both pass 1 and pass 2 require reading the source program. Apart from this an
intermediate file is created by pass 1 that contains each source statement together
with its assigned address, error indicators, etc. This file is one of the inputs to the
pass 2.

• A copy of the source program is also an input to the pass 2, which is used to retain
the operations that may be performed during pass 1 (such as scanning the
operation field for symbols and addressing flags), so that these need not be
performed during pass 2. Similarly, pointers into OPTAB and SYMTAB is
retained for each operation code and symbol used. This avoids need to repeat
many of the table-searching operations.

5. Generate the object code for the assembly language program (MAY/JUNE 2010)

The object code generated are

045788h

System Software 10CS52

Dept.of CS&E,SJBIT 16

005788h

180015h

2C5785h

984006h

00578Bh

4C0000h

7. Explain the data structures used in Assemblers. .(DEC 09/JAN 10/12)

1) OPTAB

• Mnemonic operation codes Machine code
• Contain instruction format and length

– LOCCTR LOCCTR +(instruction length)
• Implementation

– It is a static table
– Array or hash table

Usually use a hash table (mnemonic opcode as key)

2)SYMTAB:

• Label name label address, type, length, flag
– To indicate error conditions (Ex: multiple define)

• It is a dynamic table
– Insert, delete and search
– Usually use a hash table

– The hash function should perform non-random
key (Ex: LOOP1, LOOP2, X, Y, Z)

• The major issue is for insert & search but not for delete.

3)LOCCTR:

• Initialize to be the beginning address specified in the “START” statement
• LOCCTR LOCCTR + (instruction length)
• The current value of LOCCTR gives the address to the label encountered

8. What is program relocation? explain the problem associated with it and solutions? (DEC
09/JAN 10)

• Why Relocation
– It is desirable to load and run several programs at the same time

System Software 10CS52

Dept.of CS&E,SJBIT 17

– The system must be able to load programs into memory wherever there is

space
– The exact starting address of the program is not known until load time

• Absolute Program
– Program with starting address specified at assembly time
– The address may be invalid if the program is loaded into somewhere else.

• Example:
55 101B LDA THREE 00102D

– Reload the program starting at 3000

55 101B LDA THREE 00302D

• The only parts of the program that require modification at load time are those that
specify direct addresses

• The rest of the instructions need not be modified
– Not a memory address (immediate addressing)
– PC-relative, Base-relative

• From the object program, it is not possible to
Distinguish the address and constant

Solution

– The assembler must keep some information to tell the loader about this
relocated address.

– The object program that contains the modification record is called a
relocatable program

• For an address label, its address is assigned relative to the start of the program

(START 0)
• Produce a Modification record to store the starting location and the length of the

address field to be modified.
• The command for the loader must also be a part of the object program

9. Give the format of the following. (DEC 08/JAN 09), (DEC 07/JAN 08/11)

a. Header record
b. Text record
c. End record
d. Modification record

MODIFICATION RECORD

• One modification record for each address to be modified The length is stored in
half-bytes (4 bits)

• The starting location is the location of the byte containing the leftmost bits of the
address field to be modified.

• If the field contains an odd number of half-bytes, the starting location begins in
the middle of the first byte.

System Software 10CS52

Dept.of CS&E,SJBIT 18

• Modification Record

• Col. 1 M
• Col. 2-7 Starting location of the address field to be modified,

System Software 10CS52

Dept.of CS&E,SJBIT 19

relative to the beginning of the program.

. Col. 8-9 Length of the address field to be modified, in half-bytes
(Hex)

Header

Col. 1 H

Col. 2~7 Program name

Col. 8~13 Starting address (hex)

Col. 14-19 Length of object program in bytes (hex)

Text

Col.1 T

Col.2~7 Starting address in this record (hex)

Col. 8~9 Length of object code in this record in bytes (hex)

Col. 10~69 Object code (69-10+1)/6=10 instructions

End

Col.1 E

Col.2~7 Address of first executable instruction (hex)

(END program_name)

DEC 07/ JAN 08

2a) Explain the data structures in pass two of two pass assembler.

1) OPTAB

System Software 10CS52

Dept.of CS&E,SJBIT 20

• Mnemonic operation codes Machine code
• Contain instruction format and length

– LOCCTR LOCCTR +(instruction length)
• Implementation

– It is a static table
– Array or hash table

Usually use a hash table (mnemonic opcode as key)

2)SYMTAB:

• Label name label address, type, length, flag
– To indicate error conditions (Ex: multiple define)

• It is a dynamic table
– Insert, delete and search
– Usually use a hash table

– The hash function should perform non-random
key (Ex: LOOP1, LOOP2, X, Y, Z)

• The major issue is for insert & search but not for delete.

3)LOCCTR:

• Initialize to be the beginning address specified in the “START” statement
• LOCCTR LOCCTR + (instruction length)
• The current value of LOCCTR gives the address to the label encountered

2b) Give out the Head record, text and modification record

Header record:

Col 1 H

Col. 2-7 Program name

Col 8-13 Starting address of object program (hexadecimal)

Col 14-19 Length of object program in bytes (hexadecimal)

Text record:

Col. 1 T

Col 2-7. Starting address for object code in this record (hexadecimal)

Col 8-9 Length off object code in this record in bytes (hexadecimal)

System Software 10CS52

Dept.of CS&E,SJBIT 21

Col 10-69 Object code, represented in hexadecimal (2 columns per byte of

object code)

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, relative to the

beginning of the program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

2c) Explain the usage of LTORG with an example

LITERAL POOLS

• Normally literals are placed into a pool at the end of the program (after the END
statement)

– In some cases, it is desirable to place literals into a pool at some other
location in the object program

• Assembler directive LTORG
– When the assembler encounters a LTORG statement,
it generates a literal pool (containing all literal

operands used since previous LTORG)

• Reason: keep the literal operand close to the instruction Otherwise PC- relative

addressing may not be allowed
• LITTAB

The contents are

• Literal name
• Operand value and length
• Address

• LITTAB is often organized as a hash table, using the literal name or value as the
key

Pass 1

– Build LITTAB with literal name, operand value and length, leaving the
address unassigned

– When LTORG or END statement is encountered, assign an address to
each literal not yet assigned an address

System Software 10CS52

Dept.of CS&E,SJBIT 22

Pass 2

– The location counter is updated to reflect the number of bytes occupied
by each literal

– Search LITTAB for each literal operand encountered
– Generate data values using BYTE or WORD statements
– Generate Modification record for literals that represent an address in the

program

System Software 10CS52

Dept.of CS&E,SJBIT 23

UNIT 3: ASSEMBLER-2

DECEMBER 2010

3a)Define Literal and immediate operand.

value
A literal is identified with the prefix =, followed by a specification of the literal

• Examples:

LDA = C’EOF’

• Literals
– The assembler generates the specified value as a constant at some other

memory location
• Immediate Operands

– The operand value is assembled as part of the machine instruction
55 0020 LDA #3 010003

3b) What are Control sections and program blocks?

A control section is a part of the program that maintains its identity after

assembly; each control section can be loaded and relocated independently of the others.
Different control sections are most often used for subroutines or other logical
subdivisions. The programmer can assemble, load, and manipulate each of these control
sections separately.

Because of this, there should be some means for linking control sections together.
For example, instructions in one control section may refer to the data or instructions of
other control sections. Since control sections are independently loaded and relocated, the
assembler is unable to process these references in the usual way. Such references
between different control sections are called external references.

The assembler generates the information about each of the external references that
will allow the loader to perform the required linking. When a program is written using
multiple control sections, the beginning of each of the control section is indicated by an
assembler directive

System Software 10CS52

Dept.of CS&E,SJBIT 24

– assembler directive: CSECT
The syntax

sec name CSECT

– separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly
another control section; they must be identified as external reference for the loader to
handle. The external references are indicated by two assembler directives:

EXTDEF (external Definition):

It is the statement in a control section, names symbols that are defined in this

section but may be used by other control sections. Control section names do not need to
be named in the EXTREF as they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other

control section.

The order in which these symbols are listed is not significant. The assembler must
include proper information about the external references in the object program that will
cause the loader to insert the proper value where they are required.

Program blocks allow the generated machine instructions and data to appear in

the object program in a different order by Separating blocks for storing code, data, stack,
and larger data block.

Assembler Directive USE:

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no
USE statements are included, the entire program belongs to this single block. Each
program block may actually contain several separate segments of the source program.
Assemblers rearrange these segments to gather together the pieces of each block and
assign address. Separate the program into blocks in a particular order. Large buffer area is
moved to the end of the object program. Program readability is better if data areas are
placed in the source program close to the statements that reference them.

In the example below three blocks are used :

Default: executable instructions

System Software 10CS52

Dept.of CS&E,SJBIT 25

CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

Arranging code into program blocks:

Pass 1

• A separate location counter for each program block is maintained.
• Save and restore LOCCTR when switching between blocks.
• At the beginning of a block, LOCCTR is set to 0.
• Assign each label an address relative to the start of the block.
• Store the block name or number in the SYMTAB along with the assigned relative

address of the label
• Indicate the block length as the latest value of LOCCTR for each block at the end

of Pass1
• Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

• Calculate the address for each symbol relative to the start of the object program
by adding
 The location of the symbol relative to the start of its block
 The starting address of this block

3c) Explain Multipass assembler with algorithm.

The main problem in designing the assembler using single pass was to resolve

forward references. We can avoid to some extent the forward references by:

• Eliminating forward reference to data items, by defining all the storage
reservation statements at the beginning of the program rather at the end.

System Software 10CS52

Dept.of CS&E,SJBIT 26

• Unfortunately, forward reference to labels on the instructions cannot be avoided.
(forward jumping)

• To provide some provision for handling forward references by prohibiting
forward references to data items.

o One that produces object code directly in memory for immediate
execution (Load-and-go assemblers).

o Load-and-go assembler generates their object code in memory for
immediate execution.

o No object program is written out, no loader is needed.
o It is useful in a system with frequent program development and

testing
o The efficiency of the assembly process is an important

consideration.
o Programs are re-assembled nearly every time they are run;

efficiency of the assembly process is an important consideration.

MAY /JUNE 2010

3a) Literal operands

A literal is defined with a prefix = followed by a specification of the literal value.

Example:

45 001A ENDFIL LDA =C’EOF’ 032010

-

-

93 LTORG

002D * =C’EOF’ 454F46

The example above shows a 3-byte operand whose value is a character string

EOF. The object code for the instruction is also mentioned. It shows the relative

displacement value of the location where this value is stored. In the example the value is

at location (002D) and hence the displacement value is (010). As another example the

given statement below shows a 1-byte literal with the hexadecimal value ‘05’.

215 1062 WLOOP TD =X’05’ E32011

System Software 10CS52

Dept.of CS&E,SJBIT 27

It is important to understand the difference between a constant defined as a literal

and a constant defined as an immediate operand. In case of literals the assembler

generates the specified value as a constant at some other memory location In immediate

mode the operand value is assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more

literal pools. This is usually placed at the end of the program. The assembly listing of a

program containing literals usually includes a listing of this literal pool, which shows the

assigned addresses and the generated data values. In some cases it is placed at some other

location in the object program. An assembler directive LTORG is used. Whenever the

LTORG is encountered, it creates a literal pool that contains all the literal operands used

since the beginning of the program. The literal pool definition is done after LTORG is

encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal

table contains the literal name, operand value and length. The literal table is usually

created as a hash table on the literal name.

Implementation of Literals:

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists,

no action is taken; if it is not present, the literal is added to the LITTAB and for the

address value it waits till it encounters LTORG for literal definition. When Pass 1

encounters a LTORG statement or the end of the program, the assembler makes a scan of

the literal table. At this time each literal currently in the table is assigned an address. As

addresses are assigned, the location counter is updated to reflect the number of bytes

occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction

and replaces it with its equivalent value as if these values are generated by BYTE or

System Software 10CS52

Dept.of CS&E,SJBIT 28

WORD. If a literal represents an address in the program, the assembler must generate a

modification relocation for, if it all it gets affected due to relocation. The following figure

shows the difference between the SYMTAB and LITTAB

3b) What are the formats for DEFINE and REFER records?

Define record (EXTDEF)

• Col. 1 D

• Col. 2-7 Name of external symbol defined in this control section

• Col. 8-13 Relative address within this control section (hexadecimal)

• Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

• Col. 1 R

• Col. 2-7 Name of external symbol referred to in this control section

• Col. 8-73 Name of other external reference symbols

3c)Explain simple Load and go assembler with an example

• Load-and-go assembler generates their object code in memory for immediate
execution.

• No object program is written out, no loader is needed.
• It is useful in a system with frequent program development and testing

– The efficiency of the assembly process is an important consideration.
• Programs are re-assembled nearly every time they are run, efficiency of the

assembly process is an important consideration.

• Scenario for one-pass assembler:
– Load-and-Go: generates the object for

immediate execution

– External storage for intermediate file between
two passes becomes slow.

System Software 10CS52

Dept.of CS&E,SJBIT 29

DEC 09/JAN 10

3a) Define literals
• A literal is identified with the prefix =, followed by a specification of the literal

value
• Examples:

LDA = C’EOF’

• Literals
– The assembler generates the specified value as a constant at some other

memory location
• Immediate Operands

– The operand value is assembled as part of the machine instruction
55 0020 LDA #3 010003

3b)Explain load and go assembler.

Load-and-go assembler generates their object code in memory for immediate

execution.

• No object program is written out, no loader is needed.
• It is useful in a system with frequent program development and testing

– The efficiency of the assembly process is an important consideration.

System Software 10CS52

Dept.of CS&E,SJBIT 30

• Programs are re-assembled nearly every time they are run, efficiency of the
assembly process is an important consideration.

• Scenario for one-pass assembler:
– Load-and-Go: generates the object for

immediate execution

– External storage for intermediate file between
two passes becomes slow.

3c)Explain Multipass assembler for the given problem below from line 1 to 5.

Multi-Pass Assembler : Example for forward reference in Symbol Defining

Statements:

System Software 10CS52

Dept.of CS&E,SJBIT 31

DEC 08/JAN 09

3a) (i) multipass assembler (ii) MASM assembler

• For a two pass assembler, forward references in symbol definition are not

allowed:

ALPHA EQU BETA

BETA EQU DELTA

System Software 10CS52

Dept.of CS&E,SJBIT 32

DELTA RESW 1

o Symbol definition must be completed in pass 1.

• Prohibiting forward references in symbol definition is not a serious

inconvenience.

o Forward references tend to create difficulty for a person reading the

program.

Multi-Pass Assembler Example Program

Multi-Pass Assembler : Example for forward reference in Symbol Defining

Statements:

System Software 10CS52

Dept.of CS&E,SJBIT 33

(ii) MASM Assembler

The Microsoft Macro Assembler is an X86 architecture assembler for MS-DOS and
Microsoft Windows. While the name MASM has earlier usage as the Unisys OS 1100
Meta-Assembler, it is commonly understood in more recent years to refer to the
Microsoft Macro Assembler. It is an archetypal MACRO assembler for the x86 PC
market that is owned and maintained by a major operating system vendor and since the
introduction of MASM version 6.0 in 1991 has had a powerful preprocessor that supports
pseudo high level emulation of variety of high level constructions including loop code,
conditional testing and has a semi-automated system of procedure creation and
management available if required. Version 6.11d was 32 bit object module capable using
a specialised linker available in the WinNT 3.5 SDK but with the introduction of binary
patches that upgraded version 6.11d, all later versions were 32 bit Portable Executable

System Software 10CS52

Dept.of CS&E,SJBIT 34

console mode application that produced both OMF and COFF object modules for 32 bit
code.

3b) Pass 1 and Pass 2 oflinking loader

Pas&l :

begl:a
get, PROGAUD'R fr·(• rr. o 1·t\ Li ng s;yst!7m
!';1-:\, CSADDR 1.0 PROGAOm<. jfo ,, !'ir G t c.o tr ,11 ::\et I: }
while :wt mrJ c f 1npu t do

'beg!A
read .a xt input r :>t:or:i jHe d.:l::- r-<1{:0:-'G fnr ::o:Jt.nll :.;e;: tlL\ }
set c;J.'Ti-l to o.:- ntrol gect i (lH 1!-!Jl Lh
s.ear::h F.STA:B fr) r oon -:.1'0l sc t icn nl:II P.

lf f ot;ml then
;:tl;'t f;)rrru· ll;':.g !.d.u))li cat<" !'.lCl ; rni"' J. :..yn:bol :•

elae
; ntar ,),:,;1L rcl .::ec t ion n< m Lnt o ESTAB wit h vI l" C!;.I\J.)OR

wh!ht rcr;o rcl l.:yp i } ' E: • 4o
'begin

nH•rl ru-::d .lr.lJut record
1 f recc>rd . ypP. = 'D' then

fOK" cacl": symbaJ i 11 I.he J' CN'd do
begin

s 7-arc::, lo:·:'l"A5 f<::!r symbol nf!m
Jf fo·,md th..

P.l r!la, !dupl icntA Rxtcrnl sy cl)
el•e

en tcr wmbol il ' t1: :r:s"!'AB o·i tli val•J e
(t:.SAI.JDF< I i:1Jica ted 'hi rA!.;r;;.

tm4 { Dr l
Mid. {'lihil 0 'E'}

add C5 TH to CSAODR { tartin Orld·:e fcnext oont r ol A:tlo l
tDd {wh ile not EvFj

eJid { as:;; l

System Software 10CS52

Dept.of CS&E,SJBIT 35

DEC 07/ JAN 08

3a)Give out the usage of Program blocks

Program blocks allow the generated machine instructions and data to appear in the object

program in a different order by Separating blocks for storing code, data, stack, and larger

data block.

Assembler Directive USE:

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no

USE statements are included, the entire program belongs to this single block. Each

System Software 10CS52

Dept.of CS&E,SJBIT 36

program block may actually contain several separate segments of the source program.

Assemblers rearrange these segments to gather together the pieces of each block and

assign address. Separate the program into blocks in a particular order. Large buffer area is

moved to the end of the object program. Program readability is better if data areas are

placed in the source program close to the statements that reference them.

In the example below three blocks are used :

Default: executable instructions

CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

Example Code

System Software 10CS52

Dept.of CS&E,SJBIT 37

,. :ocioo-l

{ USE COATA - -c oATA

- ! It) blocy Block number
L9.QQ_Qj 0 COPY START 0
0000 0 FIRST STL RETADR 172063
0003 0 CLOOP JSUB RDREC 4B2021
0006 0 LOA LENGTH 032060
0009 0 COMP #0 290000
oooc 0 JEQ ENDFIL 332006
OOOF 0 JSUB WRREC 4B203B
0012 0 J CLOOP 3F2FEE
0015 0 ENDFIL LOA =C'EOF' 032055
0018 0 STA BUFFER OF2056
001B 0 LOA #3 010003
001E 0 STA LENGTH OF2048
0021 0 JSUB WRREC 4B2029
0024

L------

0 J @RETADR 3E203F
1 USE COATA CDATA block

-<; 0000 1 RETADR REsW 1
I._ 0003 1 LENGTH RESW 1

:L-aa-oa-1 2 USE CBLKS +---- CBLKS block

I 0000 2 BUFFER

R §8

4096

1000 2 BUFEND EQU 1r

1000 MAXLEN EQU BUFEND-BUFFER

:._-oo271
---- (default) block

0 RDREC USE • --
0027 0 CLEAR X B410
0029 0 CLEAR A B400
002B 0 CLEAR s B440
0020 0 +LOT #MAXLEN 75101000
0031 0 RLOOP TO INPUT E32038
0034 0 JEQ RLOOP 332FFA
0037 0 RO INPUT DB2032
003A 0 COMPR A,S A004
003C 0 JEQ EXIT 332008
003F 0 STCH BUFFER,X 57A02F
0042 0 TIXR T 8850
0044 0 JLT RLOOP 3B2FEA
0047 0 EXIT STX LENGTH 13201F

.-0-0--4-A--, 0 RSUB 4FOOOO
I0006 i 1
L-------
0006 1 INPUT BYTE X'F1' F1

Arranging code into program blocks:

System Software 10CS52

Dept.of CS&E,SJBIT 38

Pass 1

• A separate location counter for each program block is maintained.

• Save and restore LOCCTR when switching between blocks.

• At the beginning of a block, LOCCTR is set to 0.

• Assign each label an address relative to the start of the block.

• Store the block name or number in the SYMTAB along with the assigned relative

address of the label

• Indicate the block length as the latest value of LOCCTR for each block at the end

of Pass1

• Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

• Calculate the address for each symbol relative to the start of the object program

by adding

 The location of the symbol relative to the start of its block

 The starting address of this block

3b) How Forward references are handled in one pass assembler?

The main problem in designing the assembler using single pass was to resolve forward
references. We can avoid to some extent the forward references by:

• Eliminating forward reference to data items, by defining all the storage

reservation statements at the beginning of the program rather at the end.
• Unfortunately, forward reference to labels on the instructions cannot be avoided.

(forward jumping)
• To provide some provision for handling forward references by prohibiting

forward references to data items.
o One that produces object code directly in memory for immediate

execution (Load-and-go assemblers).
o Load-and-go assembler generates their object code in memory for

immediate execution.
o No object program is written out, no loader is needed.

System Software 10CS52

Dept.of CS&E,SJBIT 39

o It is useful in a system with frequent program development and
testing

o The efficiency of the assembly process is an important
consideration.

o Programs are re-assembled nearly every time they are run;
efficiency of the assembly process is an important consideration.

Forward Reference in One-Pass Assemblers:

In load-and-Go assemblers when a forward reference is encountered :

• Omits the operand address if the symbol has not yet been defined

• Enters this undefined symbol into SYMTAB and indicates that it is undefined

• Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry

• When the definition for the symbol is encountered, scans the reference list and

inserts the address.

• At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.

• For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps

to this location to begin execution if there is no error

System Software 10CS52

Dept.of CS&E,SJBIT 40

DECEMBER 2010

4a)Explain how Relocating loaders are used using modification records?

Methods for specifying relocation:

Use of modification record and, use of relocation bit, are the methods available for
specifying relocation. In the case of modification record, a modification record M is used
in the object program to specify any relocation. In the case of use of relocation bit, each
instruction is associated with one relocation bit and, these relocation bits in a Text record
is gathered into bit masks.

Modification records are used in complex machines and is also called Relocation

and Linkage Directory (RLD) specification. The format of the modification record (M) is
as follows. The object program with relocation by Modification records is also shown
here.

Modification record

col 1: M

col 2-7: relocation address

col 8-9: length (halfbyte)

col 10: flag (+/-)

col 11-17: segment name

HΛCOPY Λ000000 001077

TΛ000000 Λ1DΛ17202DΛ69202DΛ48101036Λ…Λ4B105DΛ3F2FECΛ032010

TΛ00001DΛ13Λ0F2016Λ010003Λ0F200DΛ4B10105DΛ3E2003Λ454F46

TΛ001035 Λ1DΛB410ΛB400ΛB440Λ75101000Λ…Λ332008Λ57C003ΛB850

TΛ001053Λ1DΛ3B2FEAΛ134000Λ4F0000ΛF1Λ..Λ53C003ΛDF2008ΛB850

TΛ00070Λ07Λ3B2FEFΛ4F0000Λ05

MΛ000007Λ05+COPY

MΛ000014Λ05+COPY

System Software 10CS52

Dept.of CS&E,SJBIT 41

MΛ000027Λ05+COPY

EΛ000000

The relocation bit method is used for simple machines. Relocation bit is 0: no
modification is necessary, and is 1: modification is needed. This is specified in the
columns 10-12 of text record (T), the format of text record, along with relocation bits is
as follows.

4b)Dynamic linking

The scheme that postpones the linking functions until execution. A subroutine is

loaded and linked to the rest of the program when it is first called – usually called
dynamic linking, dynamic loading or load on call.

The advantages of dynamic linking are, it allow several executing programs to share

one copy of a subroutine or library. In an object oriented system, dynamic linking makes
it possible for one object to be shared by several programs. Dynamic linking provides the
ability to load the routines only when (and if) they are needed. The actual loading and
linking can be accomplished using operating system service request.

MAY /JUNE 2010

4a) Explain Relocation and Linking operation.

A loader is a system program that performs the loading function. It brings object program

into memory and starts its execution. The role of loader is as shown in the figure 4.1.

Translator may be assembler/complier, which generates the object program and later

loaded to the memory by the loader for execution. In figure 4.2 the translator is

specifically an assembler, which generates the object loaded, which becomes input to the

loader. The figure4.3 shows the role of both loader and linker.

System Software 10CS52

Dept.of CS&E,SJBIT 42

Assembler

Object

Program

Executable

Code

Object
program
ready for
execution

Loader

Memory

Figure : The Role of both Loader and Linker

4b) Different Loader options

There are some common alternatives for organizing the loading functions, including

relocation and linking. Linking Loaders – Perform all linking and relocation at load time.

The Other Alternatives are Linkage editors, which perform linking prior to load time and,

dynamic linking, in which linking function is performed at execution time

Linking Loaders

System Software 10CS52

Dept.of CS&E,SJBIT 43

Object
Program(s)

Library
Linking loader

Memory

The above diagram shows the processing of an object program using Linking

Loader. The source program is first assembled or compiled, producing an object program.

A linking loader performs all linking and loading operations, and loads the program into

memory for execution.

Linkage Editors

The figure below shows the processing of an object program using Linkage editor. A

linkage editor produces a linked version of the program – often called a load module or

an executable image – which is written to a file or library for later execution. The linked

program produced is generally in a form that is suitable for processing by a relocating

loader.

Some useful functions of Linkage editor are, an absolute object program can be

created, if starting address is already known. New versions of the library can be included

without changing the source program. Linkage editors can also be used to build packages

System Software 10CS52

Dept.of CS&E,SJBIT 44

of subroutines or other control sections that are generally used together. Linkage editors

often allow the user to specify that external references are not to be resolved by automatic

library search – linking will be done later by linking loader – linkage editor + linking

loader – savings in space

Object
Program(s)

Library Linkage Editor

Linked
program

Relocating loader

Memory

Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded

and linked to the rest of the program when it is first called – usually called dynamic

linking, dynamic loading or load on call. The advantages of dynamic linking are, it allow

several executing programs to share one copy of a subroutine or library. In an object

oriented system, dynamic linking makes it possible for one object to be shared by several

System Software 10CS52

Dept.of CS&E,SJBIT 45

programs. Dynamic linking provides the ability to load the routines only when (and if)

they are needed. The actual loading and linking can be accomplished using operating

system service request.

Bootstrap Loaders

If the question, how is the loader itself loaded into the memory? is asked, then the answer

is, when computer is started – with no program in memory, a program present in ROM (

absolute address) can be made executed – may be OS itself or A Bootstrap loader, which

in turn loads OS and prepares it for execution. The first record (or records) is generally

referred to as a bootstrap loader – makes the OS to be loaded. Such a loader is added to

the beginning of all object programs that are to be loaded into an empty and idle system.

4c) (i) Linking Loader (ii) Dynamic Linking

Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded

and linked to the rest of the program when it is first called – usually called dynamic

linking, dynamic loading or load on call. The advantages of dynamic linking are, it allow

several executing programs to share one copy of a subroutine or library. In an object

oriented system, dynamic linking makes it possible for one object to be shared by several

programs. Dynamic linking provides the ability to load the routines only when (and if)

they are needed. The actual loading and linking can be accomplished using operating

system service request.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main data

structure for a linking loader.

Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and

PROGC) given is as shown below. The ESTAB has four entries in it; they are name of

System Software 10CS52

Dept.of CS&E,SJBIT 46

the control section, the symbol appearing in the control section, its address and length of

the control section.

Program Logic for Pass 1

Pass 1 assign addresses to all external symbols. The variables & Data structures used

during pass 1 are, PROGADDR (program load address) from OS, CSADDR (control

section address), CSLTH (control section length) and ESTAB. The pass 1 processes the

Define Record.

Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses

modification record and lookup the symbol in ESTAB to obtain its address. Finally it

uses end record of a main program to obtain transfer address, which is a starting address

needed for the execution of the program. The pass 2 process Text record and

Modification record of the object programs.

4a) bootstrap loader
When a computer is first turned on or restarted, a special type of absolute loader,

called bootstrap loader is executed. This bootstrap loads the first program to be run by the
computer -- usually an operating system. The bootstrap itself begins at address 0. It loads
the OS starting address 0x80. No header record or control information, the object code is
consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

System Software 10CS52

Dept.of CS&E,SJBIT 47

store the value (in A) to the address in register X

X←X+1

End

It uses a subroutine GETC, which is

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

return

4b) how object program can be processed using linkage editor?

The figure below shows the processing of an object program using Linkage editor. A
linkage editor produces a linked version of the program – often called a load module or
an executable image – which is written to a file or library for later execution. The linked
program produced is generally in a form that is suitable for processing by a relocating
loader.

Some useful functions of Linkage editor are, an absolute object program can be
created, if starting address is already known. New versions of the library can be included
without changing the source program. Linkage editors can also be used to build packages
of subroutines or other control sections that are generally used together. Linkage editors
often allow the user to specify that external references are not to be resolved by automatic
library search – linking will be done later by linking loader – linkage editor + linking
loader – savings in space

System Software 10CS52

Dept.of CS&E,SJBIT 48

Object
Program(s)

Library Linkage Editor

Linked
program

Relocating loader

Memory

DEC 08/JAN 09

4a) Explain Bootstrap Loader with its algorithm.

If the question, how is the loader itself loaded into the memory? is asked, then the answer
is, when computer is started – with no program in memory, a program present in ROM (
absolute address) can be made executed – may be OS itself or A Bootstrap loader, which
in turn loads OS and prepares it for execution. The first record (or records) is generally
referred to as a bootstrap loader – makes the OS to be loaded. Such a loader is added to
the beginning of all object programs that are to be loaded into an empty and idle system.

When a computer is first turned on or restarted, a special type of absolute loader, called
bootstrap loader is executed. This bootstrap loads the first program to be run by the
computer -- usually an operating system. The bootstrap itself begins at address 0. It loads
the OS starting address 0x80. No header record or control information, the object code is
consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

System Software 10CS52

Dept.of CS&E,SJBIT 49

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

It uses a subroutine GETC, which is

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

return

DEC 07/ JAN 08

4a)Define Loader.Give out the algorithm for bootatrap loader.

A loader is a system program that performs the loading function. It brings object program
into memory and starts its execution.

A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader,

called bootstrap loader is executed. This bootstrap loads the first program to be run by the
computer -- usually an operating system. The bootstrap itself begins at address 0. It loads
the OS starting address 0x80. No header record or control information, the object code is
consecutive bytes of memory.

System Software 10CS52

Dept.of CS&E,SJBIT 50

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

It uses a subroutine GETC, which is

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

return

4b) Explain Relocation

Use of modification record and, use of relocation bit, are the methods available for
specifying relocation. In the case of modification record, a modification record M is used
in the object program to specify any relocation. In the case of use of relocation bit, each
instruction is associated with one relocation bit and, these relocation bits in a Text record
is gathered into bit masks.

System Software 10CS52

Dept.of CS&E,SJBIT 51

Modification records are used in complex machines and is also called Relocation
and Linkage Directory (RLD) specification. The format of the modification record (M) is
as follows. The object program with relocation by Modification records is also shown
here.

Modification record

col 1: M

col 2-7: relocation address

col 8-9: length (halfbyte)

col 10: flag (+/-)

col 11-17: segment name

HΛCOPY Λ000000 001077

TΛ000000 Λ1DΛ17202DΛ69202DΛ48101036Λ…Λ4B105DΛ3F2FECΛ032010

TΛ00001DΛ13Λ0F2016Λ010003Λ0F200DΛ4B10105DΛ3E2003Λ454F46

TΛ001035 Λ1DΛB410ΛB400ΛB440Λ75101000Λ…Λ332008Λ57C003ΛB850

TΛ001053Λ1DΛ3B2FEAΛ134000Λ4F0000ΛF1Λ..Λ53C003ΛDF2008ΛB850

TΛ00070Λ07Λ3B2FEFΛ4F0000Λ05

MΛ000007Λ05+COPY

MΛ000014Λ05+COPY

MΛ000027Λ05+COPY

EΛ000000

The relocation bit method is used for simple machines. Relocation bit is 0: no
modification is necessary, and is 1: modification is needed. This is specified in the
columns 10-12 of text record (T), the format of text record, along with relocation bits is
as follows.

System Software 10CS52

Dept.of CS&E,SJBIT 52

Text record:

col 1: T

col 2-7: starting address

col 8-9: length (byte)

col 10-12: relocation bits

col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since
each text record contains less than 12 words, unused words are set to 0, and, any value
that is to be modified during relocation must coincide with one of these 3-byte segments.
For absolute loader, there are no relocation bits column 10-69 contains object code. The
object program with relocation by bit mask is as shown below. Observe FFC - means all
ten words are to be modified and, E00 - means first three records are to be modified.

HΛCOPY Λ000000 00107A

TΛ000000Λ1EΛFFCΛ140033Λ481039Λ000036Λ280030Λ300015Λ…Λ3C0003 Λ …

TΛ00001EΛ15ΛE00Λ0C0036Λ481061Λ080033Λ4C0000Λ…Λ000003Λ000000

TΛ001039Λ1EΛFFCΛ040030Λ000030Λ…Λ30103FΛD8105DΛ280030Λ...

TΛ001057Λ0AΛ 800Λ100036Λ4C0000ΛF1Λ001000

4c) How Program linking is possible in loaders?

The Goal of program linking is to resolve the problems with external references

(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section

names symbols, called external symbols, that are defined in this (present) control section

and may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH

System Software 10CS52

Dept.of CS&E,SJBIT 53

EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used

in this (present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC

EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF

The assembler must include information in the object program that will cause the loader

to insert proper values where they are required – in the form of Define record (D) and,

Refer record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

System Software 10CS52

Dept.of CS&E,SJBIT 54

UNIT 5: TEXT EDITORS

DECEMBER 2010

5a) Explain document linking process in an interactive system

Most text editors have a structure similar to that shown in the following figure. That is
most text editors have a structure similar to shown in the figure regardless of features and
the computers

Command language Processor accepts command, uses semantic routines – performs
functions such as editing and viewing. The semantic routines involve traveling, editing,
viewing and display functions.

• Editing operations are specified explicitly by the user and display operations are
specified implicitly by the editor. Traveling and viewing operations may be
invoked either explicitly by the user or implicitly by the editing operations.

• In editing a document, the start of the area to be edited is determined by the
current editing pointer maintained by the editing component. Editing component
is a collection of modules dealing with editing tasks. Current editing pointer can
be set or reset due to next paragraph, next screen, cut paragraph, paste paragraph
etc..,.

• When editing command is issued, editing component invokes the editing filter –
generates a new editing buffer – contains part of the document to be edited from
current editing pointer. Filtering and editing may be interleaved, with no explicit
editor buffer being created.

• In viewing a document, the start of the area to be viewed is determined by the
current viewing pointer maintained by the viewing component. Viewing
component is a collection of modules responsible for determining the next view.
Current viewing pointer can be set or reset as a result of previous editing
operation.

5b) Give out the relationship between editing and viewing.

System Software 10CS52

Dept.of CS&E,SJBIT 55

• Editing operations are specified explicitly by the user and display operations are

specified implicitly by the editor. Traveling and viewing operations may be

invoked either explicitly by the user or implicitly by the editing operations.

• In editing a document, the start of the area to be edited is determined by the

current editing pointer maintained by the editing component. Editing component

is a collection of modules dealing with editing tasks. Current editing pointer can

be set or reset due to next paragraph, next screen, cut paragraph, paste paragraph

etc..,.

• When editing command is issued, editing component invokes the editing filter –

generates a new editing buffer – contains part of the document to be edited from

current editing pointer. Filtering and editing may be interleaved, with no explicit

editor buffer being created.

• In viewing a document, the start of the area to be viewed is determined by the

current viewing pointer maintained by the viewing component. Viewing

component is a collection of modules responsible for determining the next view.

Current viewing pointer can be set or reset as a result of previous editing

operation.

• When display needs to be updated, viewing component invokes the viewing filter

– generates a new viewing buffer – contains part of the document to be viewed

from current viewing pointer. In case of line editors – viewing buffer may contain

the current line, Screen editors - viewing buffer contains a rectangular cutout of

the quarter plane of the text.

• Viewing buffer is then passed to the display component of the editor, which

produces a display by mapping the buffer to a rectangular subset of the screen –

System Software 10CS52

Dept.of CS&E,SJBIT 56

called a window. Identical – user edits the text directly on the screen. Disjoint –

Find and Replace (For example, there are 150 lines of text, user is in 100th line,

decides to change all occurrences of ‘text editor’ with ‘editor’).

• The editing and viewing buffers can also be partially overlapped, or one may be

completely contained in the other. Windows typically cover entire screen or a

rectangular portion of it. May show different portions of the same file or portions

of different file. Inter-file editing operations are possible.

5c)What are the features of interactive debugging system?

One important requirement of any IDS is the observation and control of the flow of
program execution. Setting break points – execution is suspended, use debugging
commands to analyze the progress of the program, résumé execution of the program.
Setting some conditional expressions, evaluated during the debugging session, program
execution is suspended, when conditions are met, analysis is made, later execution is
resumed.

A Debugging system should also provide functions such as tracing and traceback .

• Tracing can be used to track the flow of execution logic and data modifications.

The control flow can be traced at different levels of detail – procedure, branch,
individual instruction, and so on…

• Traceback can show the path by which the current statement in the program was
reached. It can also show which statements have modified a given variable or
parameter. The statements are displayed rather than as hexadecimal displacements

Program-Display capabilities

A debugger should have good program-display capabilities.

• Program being debugged should be displayed completely with statement numbers.
• The program may be displayed as originally written or with macro expansion.
• Keeping track of any changes made to the programs during the debugging

session. Support for symbolically displaying or modifying the contents of
any of the variables and constants in the program. Resume execution – after these
changes.

System Software 10CS52

Dept.of CS&E,SJBIT 57

MAY /JUNE 2010

5a) What are the four important tasks of text editor?

Document-editing process in an interactive user-computer dialogue has four tasks:

- Select the part of the target document to be viewed and manipulated

- Determine how to format this view on-line and how to display it

- Specify and execute operations that modify the target document

- Update the view appropriately

5b) What are the three basic types of computing environment for editors?

Editors function in three basic types of computing environments:

1. Time sharing

2. Stand-alone

3. Distributed.

Each type of environment imposes some constraints on the design of an

editor.

• In time sharing environment, editor must function swiftly within the context of

the load on the computer’s processor, memory and I/O devices.

• In stand-alone environment, editors on stand-alone system are built with all the

functions to carry out editing and viewing operations – The help of the OS may

also be taken to carry out some tasks like demand paging.

• In distributed environment, editor has both functions of stand-alone editor; to run

independently on each user’s machine and like a time sharing editor, contend for

shared resources such as files.

5c)Explain traceback in debugging systems?

One important requirement of any IDS is the observation and control of the flow of

program execution. Setting break points – execution is suspended, use debugging

System Software 10CS52

Dept.of CS&E,SJBIT 58

commands to analyze the progress of the program, résumé execution of the program.

Setting some conditional expressions, evaluated during the debugging session, program

execution is suspended, when conditions are met, analysis is made, later execution is

resumed.

A Debugging system should also provide functions such as tracing and trace back.

• Tracing can be used to track the flow of execution logic and data modifications.

The control flow can be traced at different levels of detail – procedure, branch,

individual instruction, and so on…

• Trace back can show the path by which the current statement in the program was

reached. It can also show which statements have modified a given variable or

parameter. The statements are displayed rather than as hexadecimal displacements

5d)What are the user interface criteria in text editor?

• Debugging systems should be simple in its organization and familiar in its

language, closely reflect common user tasks.

• The simple organization contribute greatly to ease of training and ease of use.

• The user interaction should make use of full-screen displays and windowing-

systems as much as possible.

• With menus and full-screen editors, the user has far less information to enter and

remember. There should be complete functional equivalence between commands

and menus – user where unable to use full-screen IDSs may use commands.

• The command language should have a clear, logical and simple syntax.

• command formats should be as flexible as possible.

• Any good IDSs should have an on-line HELP facility. HELP should be accessible

from any state of the debugging session.

DEC 09/JAN 10

System Software 10CS52

Dept.of CS&E,SJBIT 59

5a)Explain the structure of interactive editor in detail.(DEC 08/JAN 09)

Most text editors have a structure similar to that shown in the following figure. That is
most text editors have a structure similar to shown in the figure regardless of features and
the computers

Command language Processor accepts command, uses semantic routines – performs
functions such as editing and viewing. The semantic routines involve traveling, editing,
viewing and display functions.

Editing

component

Traveling
component

Editing

filter

Main
memory

input

Command
language
processor

Viewing
component

Viewing
buffer

Viewing

filter

Output
devices

Display
component

Paging
Routines

File
system

Control

Data

Typical Editor Structure

• Editing operations are specified explicitly by the user and display operations are
specified implicitly by the editor. Traveling and viewing operations may be
invoked either explicitly by the user or implicitly by the editing operations.

• In editing a document, the start of the area to be edited is determined by the

current editing pointer maintained by the editing component. Editing component
is a collection of modules dealing with editing tasks. Current editing pointer can
be set or reset due to next paragraph, next screen, cut paragraph, paste paragraph
etc..,.

• When editing command is issued, editing component invokes the editing filter –
generates a new editing buffer – contains part of the document to be edited from

System Software 10CS52

Dept.of CS&E,SJBIT 60

current editing pointer. Filtering and editing may be interleaved, with no explicit
editor buffer being created.

• In viewing a document, the start of the area to be viewed is determined by the
current viewing pointer maintained by the viewing component. Viewing
component is a collection of modules responsible for determining the next view.
Current viewing pointer can be set or reset as a result of previous editing
operation.

5b) What are the debugging functions and capabilities? (DEC 08/JAN 09)

One important requirement of any IDS is the observation and control of the flow of
program execution. Setting break points – execution is suspended, use debugging
commands to analyze the progress of the program, résumé execution of the program.
Setting some conditional expressions, evaluated during the debugging session, program
execution is suspended, when conditions are met, analysis is made, later execution is
resumed.

A Debugging system should also provide functions such as tracing and traceback .

• Tracing can be used to track the flow of execution logic and data modifications.

The control flow can be traced at different levels of detail – procedure, branch,
individual instruction, and so on…

• Traceback can show the path by which the current statement in the program was
reached. It can also show which statements have modified a given variable or
parameter. The statements are displayed rather than as hexadecimal displacements

Program-Display capabilities

A debugger should have good program-display capabilities.

• Program being debugged should be displayed completely with statement numbers.
• The program may be displayed as originally written or with macro expansion.
• Keeping track of any changes made to the programs during the debugging

session. Support for symbolically displaying or modifying the contents of
any of the variables and constants in the program. Resume execution – after these
changes.

DEC 07/ JAN 08

5a)Explain Macro Definition and Expansion.

System Software 10CS52

Dept.of CS&E,SJBIT 61

Figure shows the MACRO expansion. The left block shows the MACRO

definition and the right block shows the expanded macro replacing the MACRO call with

its block of executable instruction.

M1 is a macro with two parameters D1 and D2. The MACRO stores the contents

of register A in D1 and the contents of register B in D2. Later M1 is invoked with the

parameters DATA1 and DATA2, Second time with DATA4 and DATA3. Every call of

MACRO is expended with the executable statements.

Fig 6.1: macro call

The statement M1 DATA1, DATA2 is a macro invocation statements that gives the

name of the macro instruction being invoked and the arguments (M1 and M2) to be used

in expanding. A macro invocation is referred as a Macro Call or Invocation.

Macro Expansion:

The program with macros is supplied to the macro processor. Each macro

invocation statement will be expanded into the statement s that form the body of the

macro, with the arguments from the macro invocation substituted for the parameters in

the macro prototype. During the expansion, the macro definition statements are deleted

since they are no longer needed.

System Software 10CS52

Dept.of CS&E,SJBIT 62

The arguments and the parameters are associated with one another according to

their positions. The first argument in the macro matches with the first parameter in the

macro prototype and so on.

After macro processing the expanded file can become the input for the Assembler.

The Macro Invocation statement is considered as comments and the statement generated

from expansion is treated exactly as though they had been written directly by the

programmer.

he difference between Macros and Subroutines is that the statement s from the

body of the Macro is expanded the number of times the macro invocation is encountered,

whereas the statement of the subroutine appears only once no matter how many times the

subroutine is called. Macro instructions will be written so that the body of the macro

contains no labels.

• Problem of the label in the body of macro:

o If the same macro is expanded multiple times at different places in the

program …

o There will be duplicate labels, which will be treated as errors by the

assembler.

• Solutions:

o Do not use labels in the body of macro.

o Explicitly use PC-relative addressing instead.

• Ex, in RDBUFF and WRBUFF macros,

o JEQ *+11

o JLT *-14

• It is inconvenient and error-prone.

5b) How are Labels used in Macros?

It is not possible to use labels for the instructions in the macro definition, since
every expansion of macro would include the label repeatedly which is not allowed by the
assembler. This in turn forces us to use relative addressing in the jump instructions.
Instead we can use the technique of generating unique labels for every macro invocation

System Software 10CS52

Dept.of CS&E,SJBIT 63

and expansion. During macro expansion each $ will be replaced with $XX, where xx is a
two-character alphanumeric counter of the number of macro instructions expansion.

For example,

XX = AA, AB, AC…

This allows 1296 macro expansions in a single program.

The following program shows the macro definition with labels to the instruction.

System Software 10CS52

Dept.of CS&E,SJBIT 64

UNIT 6: MACRO PROCESSORS

DECEMBER 2010

6a) what are the independent macro features? Explain any two.

The design of macro processor doesn’t depend on the architecture of the machine. We

will be studying some extended feature for this macro processor. These features are:

• Concatenation of Macro Parameters

• Generation of unique labels

• Conditional Macro Expansion

• Keyword Macro Parameters

1. Concatenation of unique labels:

• Most macro processor allows parameters to be concatenated with other character

strings. Suppose that a program contains a series of variables named by the

symbols XA1, XA2, XA3,…, another series of variables named XB1, XB2,

XB3,…, etc. If similar processing is to be performed on each series of labels, the

programmer might put this as a macro instruction.

• The parameter to such a macro instruction could specify the series of variables to

be operated on (A, B, etc.). The macro processor would use this parameter to

construct the symbols required in the macro expansion (XA1, Xb1, etc.).

• Suppose that the parameter to such a macro instruction is named &ID. The body

of the macro definition might contain a statement like

 LDA X&ID1

System Software 10CS52

Dept.of CS&E,SJBIT 65

& is the starting character of the macro instruction; but the end of the parameter is not

marked. So in the case of &ID1, the macro processor could deduce the meaning that was

intended.

• If the macro definition contains contain &ID and &ID1 as parameters, the

situation would be unavoidably ambiguous.

• Most of the macro processors deal with this problem by providing a special

concatenation operator. In the SIC macro language, this operator is the character

→. Thus the statement LDA X&ID1 can be written as

LDA X&ID→

System Software 10CS52

Dept.of CS&E,SJBIT 66

The above figure shows a macro definition that uses the concatenation operator as

previously described. The statement SUM A and SUM BETA shows the invocation

statements and the corresponding macro expansion.

2. Generation of Unique Labels

• it is not possible to use labels for the instructions in the macro definition,

since every expansion of macro would include the label repeatedly which

is not allowed by the assembler.

• This in turn forces us to use relative addressing in the jump instructions.

Instead we can use the technique of generating unique labels for every

macro invocation and expansion.

• During macro expansion each $ will be replaced with $XX, where xx is a

two-character alphanumeric counter of the number of macro instructions

expansion.

System Software 10CS52

Dept.of CS&E,SJBIT 67

For example,

XX = AA, AB, AC…

This allows 1296 macro expansions in a single program.

The following program shows the macro definition with labels to the instruction.

The following figure shows the macro invocation and expansion first time.

System Software 10CS52

Dept.of CS&E,SJBIT 68

If the macro is invoked second time the labels may be expanded as $ABLOOP

$ABEXIT.

6b)Explain the macro processing feature of MASM Macro processor.

We have seen an example of the definition of one macro instruction by

another. But we have not dealt with the invocation of one macro by another. The

following example shows the invocation of one macro by another macro.

System Software 10CS52

Dept.of CS&E,SJBIT 69

MAY /JUNE 2010

6a)Give out the algorithm for one pass macro processor (DEC 08/JAN 09)

System Software 10CS52

Dept.of CS&E,SJBIT 70

Procedure DEFINE
begin

enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL :- 1
while LEVEL > do

begin
GETLINE
if this is not a comment line then

begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO' then

LEVEL := LEVEL +1
else if OPCODE = 'MEND' then

LEVEL := LEVEL - 1
end {if not comment}

end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFNI E}

Procedure EXPAND
begin

EXPANDING:= TRUE
get first line of macro definition {prototype} from DEFTAB
set up arguments from macro invocation in ARGTAB
while macro invocation to expanded file as a comment
while not end of macro definition do

begin
GETLINE
PROCESSLINE

end {while}
EXPANDING := FALSE

end {EXPAND}

Procedure GETUNE
begin

if EXPANDING then
begin

get next line of macro definrtion from DEFTAB
substitute arguments from ARGTAB for positional notation

end {if}
else

read next line from input file
end {GETLINE}

System Software 10CS52

Dept.of CS&E,SJBIT 71

6b) Explain macro expansion.

DEC 09/JAN 10

6a) What are the data structures of macroprocessors.

• DEFTAB (definition table)
– Stores the macro definition including macro prototype and macro body
– Comment lines are omitted.
– References to the macro instruction parameters are converted to a

positional notation for efficiency in substituting arguments.
• NAMTAB

• Stores macro names
• Serves as an index to DEFTAB
• Pointers to the beginning and the end of the macro definition (DEFTAB)

• ARGTAB
• Stores the arguments of macro invocation according to their positions in

the argument list
• As the macro is expanded, arguments from ARGTAB are substituted for

the corresponding parameters in the macro body.

6b)What are the advantages and disadvantages of general purpose
macroprocessors?

Macro processors that do not dependent on any particular programming language, but
can be used with a variety of different languages

• Pros

System Software 10CS52

Dept.of CS&E,SJBIT 72

o Programmers do not need to learn many macro languages.

o Although its development costs are somewhat greater than those for a

language specific macro processor, this expense does not need to be

repeated for each language, thus save substantial overall cost.

• Cons

o Large number of details must be dealt with in a real programming

language

 Situations in which normal macro parameter substitution should

not occur, e.g., comments.

 Facilities for grouping together terms, expressions, or statements

 Tokens, e.g., identifiers, constants, operators, keywords

 Syntax had better be consistent with the source programming

language

System Software 10CS52

Dept.of CS&E,SJBIT 73

UNIT 7: LEX AND YACC-1

DECEMBER 2010

7a) Give out the Structure of lex program (DEC 09/JAN 10)

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem oriented specification for character string
matching.

The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is
optional, but the first is required to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program which copies the input to the
output unchanged.

In the outline of Lex programs shown above, the rules represent the user's

control decisions; they are a table, in which the left column contains regular
expressions and the right column contains actions, program fragments to be executed
when the expressions are recognized.

Thus an individual rule might appear integer printf ("("found keyword INT"); to

look for the string integer in the input stream and print the message “found keyword
INT'' whenever it appears.

The host procedural language is C and the C library function printf is used to

print the string. The end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it can just be given on the right

System Software 10CS52

Dept.of CS&E,SJBIT 74

side of the line; if it is compound, or takes more than a line, it should be enclosed in
braces.

7b) Explain Regular expression in detail. (MAY /JUNE 2010)(DEC 09/JAN 10)

" \ [] ^ - ? . * + | () $ / { } % < >”

and if they are to be used as text characters, an escape should be used. The quotation
mark operator (") indicates that whatever is contained between a pair of quotes is to be
taken as text characters. Thus

xyz"++"

Classes of characters can be specified using the operator pair []. The construction
[abc] matches a single character, which may be a, b, or c. Within square brackets, most
operator meanings are ignored. Only three characters are special: these
are \ - and ^. The - character indicates ranges. For example,

[a-z0-9<>_]

In character classes, the ^ operator must appear as the first character after the left bracket;
it indicates that the resulting string is to be complemented with respect to the

computer character set. Thus

[^abc]

Optional expressions: The operator ? Indicates an optional element of an expression.
Thus

ab?c

matches either ac or abc.

Repetitions of classes are indicated by the operators * and +.

a*

is any number of consecutive a characters, including no character; while

a+

System Software 10CS52

Dept.of CS&E,SJBIT 75

Character Meaning

A-Z, 0-9, a-z Characters and numbers that form part of the pattern.

. Matches any character except \n.

- Used to denote range. Example: A-Z implies all characters from A

to Z.

[] A character class. Matches any character in the brackets. If the first

character is ^ then it indicates a negation pattern. Example: [abC]

matches either of a, b, and C.

* Match zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

$ Matches end of line as the last character of the pattern.

{ } Indicates how many times a pattern can be present. Example:

A{1,3} implies one or three occurrences of A may be present.

\ Used to escape meta characters. Also used to remove the special

meaning of characters as defined in this table.

^ Negation.

| Logical OR between expressions.

"<some symbols>" Literal meanings of characters. Meta characters hold.

/ Look ahead. Matches the preceding pattern only if followed by the

succeeding expression. Example: A0/1 matches A0 only if A01 is

the input.

System Software 10CS52

Dept.of CS&E,SJBIT 76

() Groups a series of regular expressions.

7c) Write a Lex program to count the number of words. (MAY /JUNE 2010)

%{

int wordCount = 0;

%}

chars [A-za-z_\'\.\"]

numbers ([0-9])+

delim [" "\n\t]

whitespace {delim}+

words {chars}+

%%

{words} { wordCount++; /*

increase the word count by one*/ }

{whitespace} { /* do

nothing*/ }

{numbers} { /* one may

want to add some processing here*/ }

%%

void main()

{

yylex(); /* start the analysis*/

printf(" No of words:

%d\n", wordCount);

}

int yywrap()

{

return 1;

}

System Software 10CS52

Dept.of CS&E,SJBIT 77

MAY /JUNE 2010

7a)Write a note on ANSI C macro language

In the ANSI C language, definitions and invocation of macros are handled
by a preprocessor. This preprocessor is not integrated with the compiler.

ANSI C Macro definitions:

Macros are used to define symbolic names.
Example:
define PI 3.14
define NULL 0.

wherever PI and NULL occurs in the program, they are replaced by 3.14 and 0
respectively.
The macro

define EQ = = can be used to reduce the common errors which always occurs
while writing programs in C. The programmer is allowed to write Statement like
while (I EQ O)

{
.
.
.

}

and the macro processor would convert this to
while (I = = 0)
{
.
.
}

Use of Macros instead of functions:
Macro is more efficient than functions as the amount of computation required
Is less than the overhead of calling a function.
Example:
define ABSDIFF (X,Y) ((X) > (Y) ? (X) – (Y) : (Y) – (X))

and the macro invocation statement
ABSDIFF (I+1, J-5)

would result in macro expansion statement
((I+1) > (J – 5) ? (I+1) – (J – 5) : (J – 5) – (I + 1))

In this macro definition, the macro processor simply makes string substitutions,
without considering the syntax of the C language.

As a result, the macro Invocation statement

System Software 10CS52

Dept.of CS&E,SJBIT 78

ABSDIFF (4 + 1, 8 – 6) would result in
4 + 1 > 8 – 6 ? 4 + 1– 8 – 6 : 8 – 6 – 4 + 1

which gives a unexpected result.

DEC 08/JAN 09

7b)Give out Lex structure. Write a Lex Program to count number of vowels and
consonants

Lex is a program generator designed for lexical processing of character input

streams. It accepts a high-level, problem oriented specification for character string
matching.

The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is
optional, but the first is required to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program which copies the input to the
output unchanged.

In the outline of Lex programs shown above, the rules represent the user's

control decisions; they are a table, in which the left column contains regular
expressions and the right column contains actions, program fragments to be executed
when the expressions are recognized.

Thus an individual rule might appear integer printf ("("found keyword INT"); to

look for the string integer in the input stream and print the message “found keyword
INT'' whenever it appears.

The host procedural language is C and the C library function printf is used to print

the string. The end of the expression is indicated by the first blank or tab character. If

System Software 10CS52

Dept.of CS&E,SJBIT 79

the action is merely a single C expression, it can just be given on the right side of the line;
if it is compound, or takes more than a line, it should be enclosed in braces

%{
/* to find vowels and consonents*/

int vowels = 0;
int consonents = 0;

%}
%%
[\t\n]+
[aeiouAEIOU] vowels++;
[bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ] consonents++;
.
%%
main()
{

yylex();
printf(" The number of vowels = %d\n", vowels);
printf(" number of consonents = %d \n", consonents);

return(0);
}

DEC 07/ JAN 08

7a) structure of Lex and Yacc

Lex is a program generator designed for lexical processing of character input streams.
It accepts a high-level, problem oriented specification for character string matching.

The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is
optional, but the first is required to mark the beginning of the rules. The absolute
minimum Lex program is thus

System Software 10CS52

Dept.of CS&E,SJBIT 80

%%

(no definitions, no rules) which translates into a program which copies the input to the
output unchanged.

In the outline of Lex programs shown above, the rules represent the user's

control decisions; they are a table, in which the left column contains regular
expressions and the right column contains actions, program fragments to be executed
when the expressions are recognized.

Thus an individual rule might appear integer printf ("("found keyword INT"); to

look for the string integer in the input stream and print the message “found keyword
INT'' whenever it appears.

The host procedural language is C and the C library function printf is used to

print the string. The end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it can just be given on the right
side of the line; if it is compound, or takes more than a line, it should be enclosed in
braces.

7 b)What are conflicts in Yacc?

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression
is to put two other expressions together with a minus sign between them. Unfortunately,
this grammar rule does not completely specify the way that all complex inputs should be
structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

System Software 10CS52

Dept.of CS&E,SJBIT 81

Yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is given an input
such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by
applying this rule; after applying the rule; the input is reduced to expr (the left side of the
rule). The parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

System Software 10CS52

Dept.of CS&E,SJBIT 82

UNIT 8: LEX AND YACC-2

DECEMBER 2010

8a)Explain shift reducing parsing.

The machine has only four actions available to it, called shift, reduce, accept,

and error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token

to decide what action should be done; if it needs one, and does not have one, it calls

yylex to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its

next action, and carries it out. This may result in states being pushed onto the stack, or

popped off the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action

is taken, there is always a lookahead token. For example, in state 56 there may be an

action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is

pushed down on the stack, and state 34 becomes the current state (on the top of the

stack). The look ahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions

are appropriate when the parser has seen the right hand side of a grammar rule, and is

prepared to announce that it has seen an instance of the rule, replacing the right hand

side by the left hand side. It may be necessary to consult the lookahead token to decide

System Software 10CS52

Dept.of CS&E,SJBIT 83

whether to reduce, but usually it is not; in fact, the default action (represented by a ``.'')

is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are

also given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34. Suppose the rule being reduced is

A : x y z ;

The reduce action depends on the left hand symbol (A in this case), and the

number of symbols on the right hand side (three in this case). To reduce, first pop off the

top three states from the stack (In general, the number of states popped equals the number

of symbols on the right side of the rule).

In effect, these states were the ones put on the stack while recognizing x, y,

and z, and no longer serve any useful purpose. After popping these states, a state is

uncovered which was the state the parser was in before beginning to process the rule.

Using this uncovered state, and the symbol on the left side of the rule, perform what is in

effect a shift of A. A new state is obtained, pushed onto the stack, and parsing continues.

The reduce action is also important in the treatment of user-supplied actions and

values. When a rule is reduced, the code supplied with the rule is executed before

the stack is adjusted. In addition to the stack holding the states, another stack,

running in parallel with it, holds the values returned from the lexical analyzer and the

actions. When a shift takes place, the external variable yylval is copied onto the

value stack. After the return from the user code, the reduction is carried out. When

the goto action is done, the external variable yyval is copied onto the value stack.

The pseudo-variables $1, $2, etc., refer to the value stack.

8b) Write a Yacc program to recognize the given arithematic expression

System Software 10CS52

Dept.of CS&E,SJBIT 84

(MAY /JUNE 2010)

#include<stdio.h>

#include <string.h>

#include <stdlib.h>

%}

% token num name

% left '+' '-'

% left '*' '/'

% left unaryminus

%%

st : name '=' expn

| expn { printf ("%d\n" $1); }

;

expn : num { $$ = $1 ; }

| expn '+' num { $$ = $1 + $3; }

| expn '-' num { $$ = $1 - $3; }

| expn '*' num { $$ = $1 * $3; }

| expn '/' num { if (num == 0)

{ printf ("div by zero \n");

exit (0);

}

else

{ $$ = $1 / $3; }

| '(' expn ')' { $$ = $2; }

System Software 10CS52

Dept.of CS&E,SJBIT 85

;

%%

main()

{

yyparse();

}

yyerror (char *s)

{

printf("%s", s);

}

8c) what are ambiguous grammar? Explain.(DEC 09/JAN 10)

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression
is to put two other expressions together with a minus sign between them. Unfortunately,
this grammar rule does not completely specify the way that all complex inputs should be
structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is

instructive to consider the problem that confronts the parser when it is given an input
such as

expr - expr - expr

System Software 10CS52

Dept.of CS&E,SJBIT 86

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by
applying this rule; after applying the rule; the input is reduced to expr (the left side of the
rule). The parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

MAY /JUNE 2010

8a) What are Yacc tools. What are the two types of conflicts that arises during

parsing?

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in

the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of

shifts. Rule 2 gives the user rather crude control over the behavior of the parser in this

situation, but reduce/reduce conflicts should be avoided whenever possible.

Yacc always reports the number of shift/reduce and reduce/reduce conflicts

resolved by Rule 1 and Rule 2.

As an example of the power of disambiguating rules, consider a fragment from a

programming language involving an ``if-then-else'' construction:

stat : IF '(' cond ')' stat

System Software 10CS52

Dept.of CS&E,SJBIT 87

| IF '(' cond ')' stat ELSE stat

;

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing

conditional (logical) expressions, and stat is a nonterminal symbol describing statements.

The first rule will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

EXAMPLE:

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways:

IF (C1) {

IF (C2) S1

} ELSE

S2

or

IF (C1) {

IF (C2) S1

ELSE S2

}

• The second interpretation is the one given in most programming languages

having this construct. Each ELSE is associated with the last preceding ``un-

ELSE'd'' IF. In this example, consider the situation where the parser has seen

IF (C1) IF (C2) S1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

System Software 10CS52

Dept.of CS&E,SJBIT 88

IF (C1) stat

and then read the remaining input,

ELSE S2

and reduce

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

• On the other hand, the ELSE may be shifted, S2 read, and then the right hand

portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule.

• Once again the parser can do two valid things - there is a shift/reduce conflict.

The application of disambiguating rule 1 tells the parser to shift in this case,

which leads to the desired grouping.

• This shift/reduce conflict arises only when there is a particular current input

symbol, ELSE, and particular inputs already seen, such as

IF (C1) IF (C2) S1

• In general, there may be many conflicts, and each one will be associated with

an input symbol and a set of previously read inputs. The previously read inputs

are characterized by the state of the parser.

stat : IF '(' cond ')' stat

• Once again, notice that the numbers following ``shift'' commands refer to other

states, while the numbers following ``reduce'' commands refer to grammar rule

System Software 10CS52

Dept.of CS&E,SJBIT 89

numbers. In the y.output file, the rule numbers are printed after those rules

which can be reduced.

8c) What are the usage of YYparse()?

The yacc program gets the tokens from the lex program. Hence a lex program has be

written to pass the tokens to the yacc. That means we have to follow different

procedure to get the executable file.

i. The lex program <lexfile.l> is fist compiled using lex compiler to get

lex.yy.c.

ii. The yacc program <yaccfile.y> is compiled using yacc compiler to get

y.tab.c.

iii. Using c compiler b+oth the lex and yacc intermediate files are compiled with

the lex library function. cc y.tab.c lex.yy.c –ll.

iv. If necessary out file name can be included during compiling with –o option.

DEC 07/ JAN 08

8a)Write a note on Editors

• An Interactive text editor has become an important part of almost any computing

environment. Text editor acts as a primary interface to the computer for all type of

“knowledge workers” as they compose, organize, study, and manipulate

computer-based information.

• A text editor allows you to edit a text file (create, modify etc…). For example the

Interactive text editors on Windows OS - Notepad, WordPad, Microsoft Word,

and text editors on UNIX OS - vi, emacs , jed, pico.

• Normally, the common editing features associated with text editors are, Moving

the cursor, Deleting, Replacing, Pasting, Searching, Searching and replacing,

Saving and loading, and, Miscellaneous(e.g. quitting).

An interactive editor is a computer program that allows a user to create and revise a target

document. Document includes objects such as computer diagrams, text, equations tables,

System Software 10CS52

Dept.of CS&E,SJBIT 90

diagrams, line art, and photographs. In text editors, character strings are the primary

elements of the target text.

Document-editing process in an interactive user-computer dialogue has four tasks:

- Select the part of the target document to be viewed and manipulated

- Determine how to format this view on-line and how to display it

- Specify and execute operations that modify the target document

- Update the view appropriately

The above task involves traveling, filtering and formatting. Editing phase involves –

insert, delete, replace, move, copy, cut, paste, etc…

o Traveling – locate the area of interest

o Filtering - extracting the relevant subset

o Formatting – visible representation on a display screen

There are two types of editors. Manuscript-oriented editor and program oriented

editors. Manuscript-oriented editor is associated with characters, words, lines, sentences

and paragraphs. Program-oriented editors are associated with identifiers, keywords,

statements. User wish – what he wants – formatted.

8b) Write a note on conditional Macro expansion

There are applications of macro processors that are not related to assemblers or assembler

programming.

Conditional assembly depends on parameters provides

MACRO &COND

……..

System Software 10CS52

Dept.of CS&E,SJBIT 91

IF (&COND NE ‘’)

part I

ELSE

part II

ENDIF

………

ENDM

Part I is expanded if condition part is true, otherwise part II is expanded. Compare

operators: NE, EQ, LE, GT.

Macro-Time Variables:

Macro-time variables (often called as SET Symbol) can be used to store working

values during the macro expansion. Any symbol that begins with symbol & and not a

macro instruction parameter is considered as macro-time variable. All such variables are

initialized to zero.

System Software 10CS52

Dept.of CS&E,SJBIT 92

Figure gives the definition of the macro RDBUFF with the parameters &INDEV,

&BUFADR, &RECLTH, &EOR, &MAXLTH. According to the above program if

&EOR has any value, then &EORCK is set to 1 by using the directive SET, otherwise it

retains its default value 0.

Fig : Use of Macro-Time Variable with EOF being NOT NULL

System Software 10CS52

Dept.of CS&E,SJBIT 93

The above program show the expansion of Macro invocation statements with different

values for the time variables. In figure the &EOF value is NULL. When the macro

invocation is done, IF statement is executed, if it is true EORCK is set to 1, otherwise

normal execution of the other part of the program is continued.

The macro processor must maintain a symbol table that contains the value of all

macro-time variables used. Entries in this table are modified when SET statements are

processed. The table is used to look up the current value of the macro-time variable

whenever it is required.

When an IF statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated.

If the value of this expression TRUE,

• The macro processor continues to process lines from the DEFTAB until it

encounters the ELSE or ENDIF statement.

• If an ELSE is found, macro processor skips lines in DEFTAB until the next

ENDIF.

• Once it reaches ENDIF, it resumes expanding the macro in the usual way.

If the value of the expression is FALSE,

• The macro processor skips ahead in DEFTAB until it encounters next ELSE or

ENDIF statement.

• The macro processor then resumes normal macro expansion.

The macro-time IF-ELSE-ENDIF structure provides a mechanism for either

generating(once) or skipping selected statements in the macro body. There is another

construct WHILE statement which specifies that the following line until the next ENDW

statement, are to be generated repeatedly as long as a particular condition is true. The

testing of this condition, and the looping are done during the macro is under expansion.

The example shown below shows the usage of Macro-Time Looping statement.

WHILE-ENDW structure

System Software 10CS52

Dept.of CS&E,SJBIT 94

• When an WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated.

• TRUE

o The macro processor continues to process lines from DEFTAB until it

encounters the next ENDW statement.

o When ENDW is encountered, the macro processor returns to the preceding

WHILE, re-evaluates the Boolean expression, and takes action based

on the new value.

• FALSE

o The macro processor skips ahead in DEFTAB until it finds the next

ENDW statement and then resumes normal macro expansion.

