

 1

Object Oriented Modeling and Design Patterns
Advanced State Modeling

Nested State Diagrams:

• Problems with flat State Diagrams

• Expanding States

• Nested States

• Signal Generalization

• Concurrency

Problems with flat State Diagrams:

 Conventional state diagrams are sufficient for describing simple systems but need
additional power to handle large problems. E.g.: Consider an object with ‘n’ independent
Boolean attributes that affect control. Representing such an object with a single flat state
diagram would require 2n states. For partitioning the state into n independent state
diagrams, only 2n states are required.

Expanding States

One way to organize a model is by having a high-level diagram with subdiagrams
expanding certain states. Figure 1 elaborates the dispense state with a lower-level state
diagram called a submachine. A submachine is a state diagram that may be invoked as
part of another state diagram.

Figure-1: Vending Machine State Diagram

A submachine is a state diagram that may be invoked as part of another state
diagram. E.g.: Vending Machine – High –level Diagram, DispenseItem - Subdiagram.
The submachine replaces the local state.

 2

do / move arm to correct row do / move arm to correct column

do / push item off shelf

arm ready

arm ready

pushed

Figure-2: DispenseItem submachine of Vending Machine

Nested States

Second alternative for structuring states is using nested states. UML2 avoids using
generalization in conjunction with states. Local state can be replaced with “nested states”.

Idle

Active

DialTone

do/soundDialTone

Timeout

do/soundLoudBeep

Warning

do/play message

Dialing

RecordedMessage

do/playMessageConnecting

do/findConnection

BusyTone

do/slowBusyTone

FastBusyTone

do/fastBusyTone

Ringing

do/ringBell

Connected

Disconnected

DialTone

do/soundDialTone

Timeout

do/soundLoudBeep

Warning

do/play message

Dialing

RecordedMessage

do/playMessageConnecting

do/findConnection

BusyTone

do/slowBusyTone

FastBusyTone

do/fastBusyTone

Ringing

do/ringBell

Connected

Disconnected

onHook / disconnectLine

offHook

digit(n)
digit(n)

time out

tine out

invalidNumbervalidNumber

numberBusy

trunkBusy

routed

calledPhoneAnswers / connectLine

calledPhoneHangsUp / disconnectLine

messageDone

Figure-3: Nested states for phone line

Figure 3 simplifies the phone line model. The composite state name labels the outer
contour that entirely encloses the nested states. A nested state receives the outgoing
transitions of its composite state. States can be nested to an arbitrary depth (E. g: Car
Transmission – Figure 4).

 3

Figure-4: Nested states for Car Transmission

All three nested states share the transition on event stop from the Forward contour to
state First.

• The nested states can be drawn as separate diagrams and reference them by
including a submachine.

• Entry and exit activities are particularly useful in nested state diagrams because
they permit a state.

• For a simple problem, implement nested states by degradation into “flat state”
diagram.

• The entry activities are executed from the outside in and the exit activities from
the inside out.

Signal Generalization

Figure-5: Partial hierarchy for keyboard signals

Signals can be organized into a generalization hierarchy with inheritance of signal
attributes. It permits different levels of abstraction to be used in a model. E.g. Key board

 4

signals - Partial hierarchy for keyboard signals. Figure 5 shows a part of a tree of input
signals for a workstation.

� Two user inputs

• MouseButton

• KeyboardCharacter

� Inherited from MouseButton

• MouseButtonDown

• MouseButtonUp

� Inherited from KeyboardCharacter

• Control

• Graphic Character

Analogous to generalization of classes, all supersignals can be abstract.

Concurrency

The state model implicitly supports concurrency among objects.

• Aggregation Concurrency

• Concurrency within an Object

• Synchronization of Concurrent Activities

• Relation of Class and State Models

Aggregation Concurrency

The aggregate state corresponds to the combined states of all the parts. Aggregation is the
“and-relationship”. Transitions for one object can depend on another object being in a
given state. Figure 6 shows the state of a Car as an aggregation of part states: Ignition,

Transmission, Accelerator, and Brake (plus other unmentioned objects).

 5

Figure-6: An aggregation and its concurrent state diagrams

Concurrency within an Object

Figure-7: Bridge game with concurrent states

 6

You can partition some objects into subsets of attributes or links, each of which has its
own subdiagram. The state of the object comprises one state from each subdiagram. The
UML shows concurrency within an object by partitioning the composite state diagram.
Figure 7 shows the state diagram for the play of a bridge rubber. Most programming
languages lack intrinsic support for concurrency.

Synchronization of Concurrent Activities

The object does not synchronize the internal steps of the activities but must
complete both activities before it can progress to its next state.

Figure-8: Synchronization of control

A cash dispensing machine dispenses cash and returns the user’s card at the end
of a transaction. Each region is a subdiagram that represents a concurrent activity within
the composite activity.

If any subdiagrams in the composite state are not part of the merge, they
automatically terminate when the merge transition fires. A completion transition fires
when activity in the source state is complete. The firing of a merge transition causes a
state diagram to perform the exit activities (if any) of all subdiagrams, in the case of both
explicit and implicit merges.

A Sample State Model

The device controls a furnace and air conditioner according to time-dependent
attributes that the owner enters using a pad of buttons.

While running, the thermostat operates the furnace of air conditioner to keep the
current temperature equal to the target temperature. The target temperature is taken from
a table of values at the beginning of each program period. The table specifies the target
temperature and start time for eight different time periods, four on weekdays and four on
weekends. The user can override the target temperature.

 7

A pad of ten pushbuttons, three switches, sees parameters on an alphanumeric
display. Each push button generates an event every time it is pushed. We assign one input
event per button:

Button Input Event

TEMP UP Raises target temperature or program temperature

TEMP DOWN Lowers target temperature or program temperature

TIME FWD Advances clock time or program time

TIME BACK Retards clock time or program time

SET CLOCK Sets current time of day

SET DAY Sets current day of the week

RUN PRGM Leaves setup or program mode and runs the program

VIEW PRGAM Enters program mode to examine and modify eight program
time and program temperature settings

HOLD TEMP Holds current target temperature in spite of the program

F-C BUTTON Alternates temperature display between Fahrenheit and Celsius

Each switch supplies a parameter value chosen from two or three possibilities. The
switches and their settings are:

Switch Setting

NIGHT LIGHT Lights the alphanumeric display. Values: light off, light on

SEASON Specifies which device the thermostat controls. Values: heat
(furnace), cool (air conditioner), off (none)

FAN Specifies when the ventilation fan operates. Values: fan on (fan
runs continuously), fan auto (fan runs only when furnace or air
conditioner is operating)

The thermostat controls the furnace, air conditioner, and fan power relays. Run furnace,
run air conditioner, run fan.

 8

ProgrammableThermostat

Fan switch on

Fan switch auto

Everything off Something on

do/light indicator

Fan off
Fan on

do/run fan

ui:user interface

Heat

Off

Cool

Furnace off Furnace off

do/run furnace

AC off AC on

do/run AC

Fan switch on

Fan switch auto

Everything off Something on

do/light indicator

Fan off
Fan on

do/run fan

ui:user interface

Heat

Off

Cool

Furnace off Furnace off

do/run furnace

AC off AC on

do/run AC

when(temp < target and Season switch in Heat)

when(temp > target + d or Season switch not in Heat)

Furnace relay

Season switch

heat
off

off cool

Air conditioner relay

when(temp > target or Season switch in Cool)

when(temp < target - d or Season switch not in Cool)

Fan switch

fan on
fan auto

when(Furnace in on or AC in on)

Run indicator

when(Furnace in off and AC in off)

Fan relay

when(Run indicator in something on or Fan switch in on)

when(Run indicator in Everything off or Fan switch in auto)

Figure-9: State diagram for programmable thermostat

Figure-10: Subdiagram for thermostat user interface

 9

Set Clock

Set minutes

do/show minutes

Set hours

do/show hours

set clock
time fwd / increment minutes

set clocktime back / decrement minutes

time fwd / increment hours

time back / decrement hours

Set Day

do/show daydo/show day

set day/increment day

Set program

do/display program period

/ set to first program time

time fwd / add 15 minutes to program time

time back / subtract 15 minutes to program time

view program / advance to next program time

do/display program period

/ set to first program temp

temp up[temp<90F] / increment program temp
temp up[temp>40F] / decrement program temp

view program / advance to next program temp

do/display program period

/ set to first program period
view program / advance to next program period

Figure-11: Subdiagram for thermostat user interface setup

Relation of Class and State Models

 A state diagram describes all or part of the behavior of the objects of a given class. A
single object can have different states over time – the object preserves its identity – but it
cannot have different classes. There are three sources of concurrency within the class
model:

• Aggregation of objects

• Aggregation within an object

• Concurrent behavior of an object

Aggregation within an object: the values and links of an object are its parts, and groups of
them taken together define concurrent substates of the composite object state. The state
model of a class is inherited by its subclasses. The state diagram of the subclass must be a
refinement of the state diagram of the superclass. Transitions can often be implemented
as operations on objects.

 10

Interaction Modeling

The interaction model describes how the objects interact. Behavior of the system
is needed to be described by State model and Interaction model. Use cases are helpful for
capturing informal requirements. Sequence diagrams are good for showing the behavior
sequences seen by users of a system. Activity diagrams can show data flows as well as
control flows.

Use Case Models – Actors:

• An actor is a direct external user of a system. Each actor represents those
objects that behave in a particular way toward the system.

� E. g Travel agency system

• Actors - traveler, agent, and airline

� Vending machine

• Actors - Customer, repair technician

• An object can be bound to multiple actors if it has different facets to its
behavior.

� Ex: Mary, Frank, Paul may be Customers of a vending machine – Paul
may also be the repair technician interacts with the machine.

• An actor is directly connected to the system

� E. g The dispatcher of repair technicians from a service bureau is not an
actor of a vending machine

� Only the repair technician interacts directly with the machine and he is an
actor

Use Case Models - Use Cases:

• A use case is a coherent piece of functionality that a system can provide by
interacting with actors

• Example

� A customer actor can buy a beverage from a vending machine

� Repair technician can perform scheduled maintenance on a vending
machine.

• Use case summaries for a vending machine:

• Buy a beverage. The vending machine delivers a beverage after a
customer selects and pays for it.

• Perform scheduled maintenance. A repair technician performs the periodic
service on the vending machine necessary to keep it in good working
condition.

 11

• Make repairs. A repair technician performs the unexpected service on the
vending machine necessary to repair a problem in its operation.

• Load items. A stock clerk adds items into the vending machine to
replenish its stock of beverages.

• Each use case involves one or more actors as well as the system itself

� Example - In a telephone system, the use case make a call involves two
actors, a caller and a receiver

• The actors need not be all persons

� Example - The use case make a trade on an online stock broker involves a
customer actor an a stock exchange actor

• A use case involves a sequence of messages among the system and its actors. This
can be repeated several times

� Example - In the buy a beverage use case, the customer first inserts a coin
and the vending machine displays the amount deposited

• Define a mainline behavior sequence first, then define optional subsequences,
repetitions, and other variations

� Example - A customer can deposit a variable number of coins in the buy a

beverage use case. Depending on the money inserted and the item selected
the machine may or may not return change

• Error conditions are also part of a use case.

� Example - If the customer selects a beverage whose supply is exhausted,
the vending machine displays a warning message

• A use case brings together all of the behavior relevant to a slice of system
functionality.

• Normal mainline behavior, variations on normal behavior, exception conditions,
error conditions and cancellations of a request

• Use case description - buy a beverage:

• Use Case: Buy a beverage

• Summary: The vending machine delivers a beverage after a customer
selects and pays for it

• Actors: Customer

• Preconditions: The machine is waiting for money to be inserted

• Description: The machine starts in the waiting state in which it displays
the message “Enter coins.” A customer inserts coin into the machine. The
machine displays the total value of money entered and lights up the
buttons for the items that can be purchased for the money inserted. The
customer pushes a button. The machine dispenses the corresponding item
and makes change, if the cost of the item is less than the money inserted.

 12

• Exceptions:

• Canceled: If the customer presses the cancel button before an item
has been selected, the customer’s money is returned and the
machine resets to the waiting state.

• Out of stock: If the customer presses a button for an out-of-stock
item, the message “The item is out of stock” is displayed. The
machine continues to accept coins or a selection.

• Exceptions:

• Insufficient money: If the customer presses a button for an item
that costs more than the money inserted, the message “You must
insert $nn.nn more for that item” is displayed, where nn.nn is the
amount of additional money needed. The machine continues to
accept coins or a selection

• Exceptions:

• No change: If the customer has inserted enough money to buy the
item but the machine cannot make the correct change, the message
“Cannot make correct change” is displayed and the machine
continues to accept coins or a selection.

• Postconditions: The machine is waiting for money to be inserted.

• In a complete model, the use cases partition the functionality of the system

• They should preferably all be at a comparable level of abstraction

• Example:

• Use cases make telephone call & record voice mail message are at the
same level of abstraction

• The use case set external speaker volume to high is too narrow

• set speaker volume or set telephone parameters – same level of abstraction
as make telephone call

Use Case Diagrams:

• A system involves a set of use cases and a set of actors

• Set of use cases shows the complete functionality of the system at some level of
detail

• Set of actors represents the complete set of objects that the system can serve

Use Case Diagrams – elements:

 13

System

buy beverage

Customer

perfrom scheduled maintenance

make repairs

load items

Repair technician

Stock clerk

Vending Machine

Guidelines for Use Case Models:

Use Cases identifies the functionality of a system and organize it according to the
perspective of users. Use Cases describe complete transactions and are therefore less
likely to omit necessary steps.

• First determine the system

• Ensure that actors are focused

• Each use case must provide value to users. For example, dial a telephone number
is not a good use case for a telephone system

• Relate use cases and actors

• Remember that use cases are informal

• Use cases can be structured

Use Case Relationships:

Use cases can be structured for large applications. Complex use cases can be built
from smaller pieces with the following relationships:

• include

• extend

• generalization

 14

include Relationship:

• The include relationship incorporates one use case within the behavior sequence
of another use case

• The UML notation for an include relationship is a dashed arrow from the source
use case to the target (included) use case

• The keyword <<include>> annotates the arrow

• A use case can also be inserted within a textual description with the notation
include use-case-name.

• Factoring a use case into pieces is appropriate when the pieces represent
significant behavior units.

secure session

make trade

validate password

<<include>>

<<include>>

including use case

included use case

• A use case can also be inserted within a textual description with the notation
include use-case-name.

• Factoring a use case into pieces is appropriate when the pieces represent
significant behavior units.

extend Relationship:

• The extend relationship adds incremental behavior to a use case

• It represents the frequent situation in which some initial capability is defined, and
later features are added modularly

• Example

• A stock brokerage system might have the base use case trade stocks,
which permits a customer to purchase stocks for cash on hand in the
account.

• The additional behavior is inserted at the point where the purchase cost is
checked against the account balance.

• The UML notation for extend relationship is a dashed arrow from the extension
use case to the base use case

 15

trade stocks

margin trading

short sale limit order

trade options

<<extend>>

<<extend>>

<<extend>>

<<extend>>

• The keyword <<extend>> annotates the arrow

• The extend relationship connects an extension use case to a base use case

• The base use case must be a valid use case in the absence of any extensions.

• The behavior sequence of the extension use case occurs at the given point in the
sequence.

• The extension behavior occurs only if the condition is true when control reaches
the insert location.

Use cases – Generalization:

• Generalization can show specific variations on a general use case, analogous to
generalization among classes

• The UML indicates generalization by an arrow with its tail on the child use case
and a triangular arrowhead on the parent use case, the same notation that is used
for classes

<<extend>>

 16

 trade bonds trade options trade stocks

 make trade

• A parent use case may be abstract or concrete

� An abstract use case cannot be used directly

• Use cases also exhibit polymorphism

� A child use case can freely substitute for a parent use case.

• Use case generalization is more complicated than class generalization.

Combinations of the Use Case Relationships:

• A single diagram may combine several kinds of use case relationships

Use case relationships:

 17

• A parent use case may be abstract or concrete

� An abstract use case cannot be used directly

• Use cases also exhibit polymorphism

� A child use case can freely substitute for a parent use case.

• Use case generalization is more complicated than class generalization

Guidelines for Use case Relationships:

• Use case generalization.

• Use case inclusion.

• Use case extension

• Include relationship vs. extend relationship

Use case diagram – Example1:

• Consider a computer email system.

� List three actors. Explain the relevance of each actor.

� One use case is to get email. List four additional use cases at a comparable
level of abstraction. Summarize the purpose of each use case with a
sentence.

� Prepare a use case diagram for a computer email system.

• Actors:

� User: A person who is the focus of services

� Server: A computer that communicates with the email system and is the
intermediate source and destination of email messages.

� Virus checker: Software that protects against damage by a malicious user

• Use cases

� Get email: Retrieve email from the server and display it for the user

� Send email: Take a message that was composed by the user and send it to
the server

� Manage email: Perform tasks such as deleting email, managing folders,
and moving email between folders

� Set options: Do miscellaneous things to tailor preferences to the user’s
liking.

� Maintain address list: Keep a list of email addresses that are important to
the user

 18

Use case diagram – Example1

Use case diagram – Example2:

• Consider an online frequent flyer program. Prepare a use case diagram and
include the appropriate relationships for the use cases listed below:

� View credits. View the frequent flyer points currently available in the
account

� Submit missing credit. Request credit for an activity that was not credited

� Change address. Submit a new mailing address

� Change user name. Change the user name for the account

� Change password. Change the password for the account

� Book a free flight. Use frequent flyer credits to obtain a free flight

� Book a free hotel. Use frequent flyer credits to obtain a free hotel

� Book a free rental car. Use frequent flyer credits to obtain a free rental
car

� Request frequent flyer credit card. Fill out an application for a credit
card that gives frequent flyer points as a bonus for purchases

� Check prices and routes. Find possible routings and corresponding prices
for a paid flight

� Check availability for a free flight. Check availability of free travel for a
specified flight

Hint

SystemComputer Email

Get email

Send email

Manage email

Set options

Maintain address list

Server

Virus Checker

User

 19

SystemOnline Frequent Flyer

Book award

Book free flight

Book free hotel

Book free car rental

check free flight available

check prices and routes

Update account

Change address
Change user name

Change password

Submit missing credit

View credits

Request Credit card application

<<extend>>

Customer
Airline

<<include>>

Finding a free flight is the same as finding a paid flight, except seats are limited for free
flights (hence the extend relationship). When submitting a claim for missing credits, a
user must first view their existing credits (hence the include relationship).

Use case diagram – Exercise 1:

• Consider a physical bookstore, such as in shopping mall.

� List three actors that are involved in the design of a checkout system.
Explain the relevance of each actor

� One use case is the purchase of items. Take the perspective of a customer
and list another use case at a comparable level of abstraction. Summarize
the purpose of each use case with a sentence.

� Prepare a use case diagram

� One use case is the purchase of items. Take the perspective of a customer
and list another use case at a comparable level of abstraction. Summarize
the purpose of each use case with a sentence.

� Prepare a use case diagram

Use case diagram – Exercise 2:

� You are interacting with an online travel agent and encounter the following use
cases. Prepare a use case diagram, using the generalization and include
relationships.

 20

� Purchase a flight. Reserve a flight and provide payment and address
information.

� Provide payment information. Provide a credit card to pay for the
incurred changes.

� Provide address. Provide mailing and residence address.

� Purchase car rental. Reserve a rental car and provide payment and
address information.

� Purchase a hotel stay. Reserve a hotel room and provide payment and
address information.

� Make a Purchase. Make a travel purchase and provide payment and
address information.

 21

Sequence Models

The sequence model elaborates the themes of use cases. Two kinds of sequence models:

� scenarios and

� more structured format called sequence diagrams

Scenario:

A scenario is a sequence of events that occurs during one particular execution of a
system, such as for a use case. A scenario can be displayed as a list of text statement.
Scenario for a session with an online stock broker:

• John Doe logs in
• System establishes secure communications
• System displays portfolio information
• John Doe enters a buy order for 100 shares of GE at the market price
• System verifies sufficient funds for purchase
• System displays confirmation screen with estimated cost
• John Doe confirms purchase
• System places order on securities exchange
• System displays transaction tracking number
• John Doe logs out
• System establishes insecure communications
• System displays good-bye screen
• System exchange reports results of trade

At early stages of development, scenarios are expressed at a high level. A scenario
contains messages between objects as well as activities performed by objects.

• The first step of writing a scenario is to identify the objects exchanging messages.

• Determine the sender and receiver of each message and sequence of messages

• Add activities for internal computations
Sequence diagram:

A sequence diagram shows the participants in an interaction and the sequence of
messages among them. Each actor as well as the system is represented by a vertical line
called a lifeline and each message by a horizontal arrow from the sender to the receiver.
Note: sequence diagrams can show concurrent signals.

Each use case requires one or more sequence diagrams to describe its behavior.
• Prepare one sequence diagram for each major flow of control
• Draw a separate sequence diagram for each task.
• Prepare a sequence diagram for each exception condition within the use case
• Try to elaborate all the use cases and cover the basic kinds of behavior with

sequence diagrams
Guidelines for Sequence Models

• Prepare at least one scenario per use case
• Abstract the scenarios into sequence diagrams

 22

 : Customer : Stock Broker System : SecuritiesExchange

login

{Verify Customer}Secure communication

Display portfolio

enter purchase data

request confirmation

confirm purchase

place order
display order number

logout

insecure communication

display good bye

report results of trade

{Verify funds}

{execute order}

 : Customer : Stock Broker System : SecuritiesExchange

enter purchase data

request confirmation

confirm purchase

place order
display order number

logout

insecure communication

display good bye

report results of trade

{Verify funds}

{execute order}

• Divide complex interactions
• Prepare a sequence diagram for each error condition

Sequence diagram for a session with online stock broker:

Sequence diagram for a stock purchase:

Sequence diagram for a stock quote:

 23

 : Customer : Stock Broker System : SecuritiesExchange

enter purchase data

reject purchase

cancel purchase

{Verify funds: insufficient}

 : Customer : StockBrokerSystem : SecuritiesExchange

enter stock symbol

request stock data

report stock data
display quote

Sequence diagram for a stock purchase that fails:

Sequence diagram – Example:

• Normal scenario for each use case
• Get email

� User logs in to email system.
� System displays the mail in the Inbox folder.
� User requests that system get new email.
� System requests new email from server.
� Server returns new email to system.
� System displays the mail in the Inbox folder and highlights unread

messages.
Sequence Diagrams with Passive Objects:

Most objects are passive and do not have their own threads of control. Activation
shows the time period during which a call of a method is being processed, including the
time when the called method has invoked another operation.
Sequence Diagrams with Transient Objects:

ObjectA is an active object that initiates an operation. The notation for a call is an
arrow from the calling activation created by the call. Activation, therefore, has a call
arrow coming into its top and a return arrow leaving its bottom. If an object does not exist
at the beginning of a sequence diagram, then it must be created during the sequence
diagram. The UML shows creation by placing the object symbol at the head of the arrow
for the call that creates the object. Conditionals on a sequence diagram also can be
shown.

 24

Guidelines for Procedural Sequence Models:

• Active vs. passive objects.
� By definition, active objects are always activated and have their own focus

of control.
• Advanced features.

� Only show implementation details for difficult or especially important
sequence diagrams.

Sequence diagram with passive objects:

Sequence diagram with a transient object:

 25

verify order

execute order

send confirmation debit account update online portfolio send failure notice

settle trade

close order

[success]

[failure]

Activity Models
An activity diagram shows the sequence of steps that make up a complex process, but
focuses on operations rather than on objects. Activity diagrams are most useful during the
early stages of designing algorithms and workflows.
Activities:

The steps of an activity diagram are operations, specifically activities from the state
model.
Executable Activity Diagrams:

An activity token can be placed on an activity symbol to indicate that it is executing.
Multiple tokens can arise through concurrency.

Activity diagram for stock trade processing:

Activity diagram for execute order:

 26

find buyer at market price find seller at market price

find buyer at limit price or better find seller at limit price or better

[market order]

[limit order]
[selling] [buying]

[selling] [buying]

[price not available]

[price available]

[time out]

[order still active]

Executable Activity Diagrams

An activity token can be placed on an activity symbol to indicate that it is executing.
Multiple tokens can arise through concurrency.
Guidelines for Activity Models:

• Don’t misuse activity diagrams.
� Activity diagrams are intended to elaborate use case should not be used as

an excuse to develop software via flowcharts.
• Level diagrams
• Consider executable activity diagrams

Sending and Receiving Signals

The UML shows the sending of a signal as a convex pentagon. The UML shows the
receiving of a signal as a concave pentagon

• Example: Consider a workstation that is turned on. It goes through a boot
sequence and then requests that the user login. After entry of a name and
password, the workstation queries the network to validate the user. Upon
validation, the workstation then finishes its startup process. Figure 8.7 shows the
corresponding activity diagram

Activity diagram with signals:

 27

Swimlanes:

• In a business model, it is often useful to know which human organization is
responsible for an activity.

• Example: Sales, finance, marketing, and purchasing

• It is sufficient to partition the activities among organizations.

• Lines across swimlane boundaries indicate interactions among different
organizations

Activity diagram with swimlanes:

Object Flows

 It is helpful to see the relationships between an operation and the objects that
are its argument values or results. An input or output arrow implies a control flow
Frequently the same object goes through several states during the execution of any
activity diagram. UML shows an object value in a particular state by placing the state
name in square brackets following the object name

Activity diagram with object flows:

 28

Concepts Summary:

• Three different views: Class model, state model and interaction model
o Class Model-describes objects in the system and their relationships
o State model - life history of the objects
o Interaction model-Interaction among objects

Class Design

Review of Analysis:

• Steps : Domain Analysis , Application Analysis

• Domain Class Model , Application class Model

• Domain Class Model:

 - Find Classes

 - Prepare data dictionary

 - Find Associations

 - Find attributes of objects and links

 - Organize and simplify classes using inheritance

 - Verify that access paths exists for likely queries

 - Iterate and refine the model

 - Reconsider the level of abstraction

 29

 - Group classes into packages

• Application Class Model

 - Specify user Interface

 - Define boundary classes

 - Define controllers

 - Check against the interaction model

Class Design:

The purpose of class design is to complete the definitions of the classes and
associations and choose algorithms for operations. The OO paradigm applies equally well
in describing the real-world specification and computer-based implementation.

Overview of Class Design:

The analysis model describes the information that the system must contain and the
high-level operations that it must perform. The simplest and best approach is to carry the
analysis classes directly into design.

During design, choose among the different ways to realize the analysis classes for
minimizing execution time, memory, and other cost measures. New classes may be
introduced to store intermediate results during program execution and avoid
recomputation. OO design is an iterative process.

Class design involves the following steps.

� Bridge the gap from high-level requirements to low-level services.

� Realize use cases with operations

� Formulate an algorithm for each operation.

� Recurse downward to design operations that support higher-level
operations.

� Refactor the model for a cleaner design.

� Optimize access paths to data.

� Reify behavior that must be manipulated.

� Adjust class structure to increase inheritance.

� Organize classes and associations.

Bridging the Gap: The Design Gap

 30

 Resources include the operating system infrastructure, class libraries, and
previous applications. If you can directly construct each feature from the resources, you
are done.

• A Web-based ordering system.

 The system cannot be built readily from a spreadsheet or a programming
language, because there is too big a gap between the features and the resources.

 If the gap is large, the intermediate elements need to be organized into multiple
levels. The intermediate elements may be operations, classes, or other UML constructs.

There can be many ways to decompose a high-level operation. If the intermediate
elements have already been built, directly use them, but the principle of bridging the gap
is the same. Design is difficult because it is not a pure analytic task.

Design requires synthesis: You have to invent new intermediate elements and try to fit
them together. It is a creative task, like solving puzzles, proving theorems, playing chess,
building bridges, or writing symphonies.

Example-Web Application:

• During analysis, we were content to leave the interface between the actor and the
system—as expressed in the interaction diagrams—as user interface

• During design, the interface needs to be elaborated into a set of specific interfaces
capable of handling the communication between the actors and the system, as
well as supporting the flow of activity of business processes

• In addition to elaborating the classes and collaborations, design activities include

• Partitioning objects into client, server, and other tiers

• Separating and defining user interfaces, or Web pages

• Intermediate elements

• A client page instance is an HTML-formatted Web page with a mix of
data, presentation, and even logic. Client pages are rendered by client
browsers and may contain scripts that are interpreted by the browser.
Client page functions map to functions in tags in the page. Client page

 31

attributes map to variables declared in the page's script tags that are
accessible by any function in the page, or page scoped. Client pages can
have associations with other client or server pages.

• A server page represents a dynamic Web page that contains content
assembled on the server each time it is requested. Typically, a server page
contains scripts that are executed by the server that interacts with server-
side resources: databases, business logic components, external systems,
and so on. The object's operations represent the functions in the script, and
its attributes represent the variables that are visible in the page's scope,
accessible by all functions in the page.

• Example intermediate elements for Web Application Design:

• The Web Application Extension (WAE) for UML is a set of
stereotypes, tagged values, and constraints that allows Web
applications to be fully modeled with UML.

• The core class elements of the WAE are «server page», «client
page», and «HTML form».

• The core association elements are «link», «build», «forward»,
«redirect», and «object».

• The core component view elements are the «static page» and
«dynamic page» components and the «physical root» package.

• Properly partitioning the business objects in a Web application is
critical and depends on the architecture.

• Mappings between the User experience(UX) and design models
are useful and help establish the contract between the UX and
engineering teams

Realizing Use Cases:

During class design, elaborate the complex operations, most of which come from use
cases. Design is the process of realizing functionality while balancing conflicting needs.
During design invent new operations and new objects that provide this behavior.
Inventing the right intermediate operations is what we have called “bridging the gap”.
List the responsibilities of a use case or operation. A responsibility is something that an
object knows or something it must do.

• E.g. An online theater ticket system

� Use case - Making a reservation

� Responsibilities

• Finding unoccupied seats to the desired show

• Marking the seats as occupied

• Obtaining payment from the customer

• Arranging delivery of the tickets and

 32

• Crediting payment to the proper account

Each operation has various responsibilities. Group the responsibilities into clusters and
try to make each cluster coherent. Define an operation for each responsibility cluster. If
there is no good class to hold an operation, invent a lower-level class.

• E.g - ATM

� Use case – process transaction

� Withdrawal responsibilities:

• get amount from customer,

• verify that amount is covered by the account balance

• verify that amount is within the bank’s policies

• verify that ATM has sufficient cash disburse funds

• debit bank account and

• post entry on the customer’s receipt

� Deposit - responsibilities:

• get amount from customer

• accept funds envelope from customer

• time-stamp envelope

• credit bank account and

• post entry on the customer’s receipt

� Transfer - responsibilities:

• get source account

• get target account

• get amount verify that source account covers amount

• verify that the amount is within the bank’s policies

• debit the source account

• credit the target account and

• post an entry on the customer’s receipt

ATM Domain Class Model:

 33

Exercises -

EXCD 1;

Consider the following use cases for the simple diagram editor:

� Create drawing - Start a new, empty drawing in memory and overwrite
any prior contents. Have the user confirm, if there is a prior drawing that
has not been saved.

� Modify drawing - Change the contents of the drawing that is loaded into
memory.

� Save to file - Save the drawing in memory to a file.

� Load from file. Read a file and load a drawing into memory overwriting
any prior contents. Have the user confirm, if there is a prior drawing that
has not been saved.

� Quit drawing. Abort the changes to a drawing and clear the contents of
memory

� List at least four responsibilities for each one.

Answer EX-CD1:

� The responsibilities for the use cases are:

• Create drawing

• If there is an unsaved drawing, warn the user, and then
clear the memory if the user confirms.

• Create a single sheet and set the current sheet to this sheet.

 34

• If there is an unsaved drawing, warn the user, and then
clear the memory if the user confirms.

• Set the color to black and the line width to thin.

• Turn the automatic ruler on.

• Modify drawing

• Make the change as indicated by the user on the screen.

• Update the underlying memory representation.

• Reset the undo buffer to recover from the modification.

• Set the hasBeenUpdated flag in memory.

• Load from file

• If there is an unsaved drawing, warn the user, and then
clear the memory if the user confirms.

• Find the file on the disc and complain if the file is not
found.

• Display an error message if the file is corrupted.

• Show a drawing on the screen that corresponds to the
contents in memory.

• Set the current sheet to the first sheet.

• Quit drawing

• If there is an unsaved drawing and the user declines to
confirm, terminate quit drawing

• Clear the contents of the screen.

• Clear the contents of memory.

• Clear the undo buffer.

•

Exercises – EXCD 2;

Consider the following use cases for Computerized Scoring System.

� register child

� schedule meet

� schedule season

List at least four responsibilities for each one.

Answer EX-CD2:

Responsibilities for the use cases

• Register child

 35

� Add a new child to the scoring system and record their data.

� Verify their eligibility for competition.

� Make sure that they are assigned to the correct team.

� Assign the child a number.

• Schedule meet

� Choose a date for the meet within the bounds of the season.

� Ensure that there are no conflicting meets on that date.

� Notify the league and participating teams of the meet.

� Arrange for judges to be there.

• Schedule season

� Determine starting and ending dates.

� Determine the leagues that will be involved.

� Schedule a series of meets that comprise the season.

� Check that each team in the participating leagues has a balanced schedule

Exercises – EXCD 3;

Modify the following class diagram, so that a separate class provides margins. Different
categories of pages may have a default margin, and specific pages may override the
default.

Answer EX- CD3:

 36

• Each page has an explicit PageCategory object that determines its size.

• Each PageCategory object has an associated PageMargin object that specifies the
default margin settings.

• Any page can explicitly specify a PageMargin object to override the default
settings.

Exercises – EXCD 4;

Which classes in the class diagram must supply a delete operation visible to the outside
world? To delete means to destroy an object and remove it from the application. Explain
your answer.

Answer EX-CD 4:

• All of the classes will probably implement a delete method, but the
GraphicsPrimitive class must define delete as an externally-visible operation. A
typical application would contain mixed sets of GraphicsPrimitive objects. A
typical operation would be to delete a GraphicsPrimitive from a set.

• The client program need not know the GraphicsPrimitive subclass; all that
matters is that it supplies a delete operation.

• Ellipse and Rectangle may have to implement delete as distinct methods, but they
inherit the protocol from GraphicsPrimitive.

• Class BoundingBox must also define a delete operation, but this should not be
visible to the outside world. A Bounding-Box is a derived object and may not be
deleted independently of its GraphicsPrimitive.

 37

Page

+width
+length
+leftMargin
+rightMargin
+topMargin
+bottomMargin

Column

+xLocation
+yLocation
+width
+length

Line

+text

Column

+xLocation
+yLocation
+width
+length

Line

+text

Page

• BoundingBox.delete is visible only internally for the methods of
GraphicsPrimitive

Exercises – EXCD 5;

Modify the following class diagram to make it possible to determine what Page a Line is
on without first determining the Column.

Answer EX-CD 5:

Designing Algorithms

Steps:

� Choose algorithms that minimize the cost of implementing operations

� Select data structures appropriate to the algorithms

� Define new internal classes and operations as necessary

� Assign operations to appropriate classes

Choosing Algorithms

� Many operations traverse the class model to retrieve or change attributes or links

� OCL (Object Constraint Language) provides a convenient notation for expressing
such traversals(next slide we brief about OCL)

� ATM Examples of OCL Expressions

� OCL to answer the credit card questions

o What transactions occurred for a credit card account within a time interval?

 aCreditCardAccount.Statement.Transaction->

 select (aStartDate <= transactionDate and

 transactionDate <= anEndDate)

 38

o What volume of transactions were handled by an institution in the last year?

 anInstitution.CreditCardAccount.Statement.Transaction ->

 select (aStartDate <= transactionDate and

 transactionDate <= anEndDate) .amount -> sum()

o What customers patronized a merchant in the last year by any kind of credit card?

 aMerchant.Purchase ->

 select (aStartDate <= transactionDate and

 transactionDate <= anEndDate) .Statement.

 CreditCardAccount.MailingAddress.Customer -> asset()

o How many credit card accounts does a customer currently have?

 aCustomer.MailingAddress.CreditCardAccount -> size()

o What is the total maximum credit for a customer, for all accounts?

 aCustomer.MailingAddress.CreditCardAccount.

 maximumCredit -> sum()

o Pseudocode helps us think about the algorithm while deferring programming
details(as traversal using OCL may not fully express some operations). For
example, many applications involve graphs and the use of transitive closure(?)

 Transitive closure

� Informal definition: If there is a path from a to b, then there should be an edge from a
to b in the transitive closure

� First take of a definition:

� In order to find the transitive closure of a relation R, we add an edge from a to c,
when there are edges from a to b and b to c

� But there is a path from 1 to 4 with no edge!

 39

� Informal definition: If there is a path from a to b, then there should be an edge from a
to b in the transitive closure

� Second take of a definition:

o In order to find the transitive closure of a relation R, we add an edge from
a to c, when there are edges from a to b and b to c

o Repeat this step until no new edges are added to the relation

� We will study different algorithms for determining the transitive closure

� red means added on the first repeat

� Teal means added on the second repeat

6 degrees of separation

� The idea that everybody in the world is connected by six degrees of separation

o Where 1 degree of separation means you know (or have met) somebody else

� Let R be a relation on the set of all people in the world

o (a,b) ∈ R if person a has met person b

� So six degrees of separation for any two people a and g means:

o (a,b), (b,c), (c,d), (d,e), (e,f), (f,g) are all in R

� Or, (a,g) ∈ R6

Connectivity relation

� R contains edges between all the nodes reachable via 1 edge

� R◦R = R2 contains edges between nodes that are reachable via 2 edges in R

� R2◦R = R3 contains edges between nodes that are reachable via 3 edges in R

� Rn = contains edges between nodes that are reachable via n edges in R

1

2 3

4

 40

� R* contains edges between nodes that are reachable via any number of edges (i.e. via
any path) in R

o Rephrased: R* contains all the edges between nodes a and b when is a path of
length at least 1 between a and b in R

� R* is the transitive closure of R

o The definition of a transitive closure is that there are edges between any nodes
(a,b) that contain a path between them

Finding the transitive closure

� Let MR be the zero-one matrix of the relation R on a set with n elements. Then the
zero-one matrix of the transitive closure R* is:

Choosing Algorithms

Pseudocode example

Node Edge2 *

Considerations for choosing among alternative algorithms

o Computational complexity

o Ease of implementation and understandability

o Flexibility

Node: :computeTransitiveClosure () returns NodeSet

 Nodes:= createEmptySet;

 return self.TCloop (nodes);

][]3[]2[

*

n

RRRRR MMMMM ∨∨∨∨= L

Nodes reachable with one
application of the relation

Nodes reachable with two
applications of the relation

Nodes reachable with n
applications of the relation

 41

Node::TCloop (nodes:Nodeset) returns NodeSet

 add self to nodes;

 for each edge in self.Edge

 for each node in edge.Node

 /* 2 nodes are associated with an edge */

 if node is not in nodes then node.TCloop(nodes);

 end if

 end for each node

end for each edge

ATM example

� Interactions between the consortium computer and bank computers could be

complex.

o Distributed computing

o The consortium computer to be scalable

o The bank systems are separate applications from the ATM system

Choosing Data Structures

� During design data structures must be devised to permit efficient algorithms

� Many of these data structures are instances of container classes.

� Data structures include arrays, lists, queues, stacks, sets, bags, dictionaries, trees,
and many variations, such as priority queues and binary trees.

� ATM example.

o A Transaction should have an ordered list of Updates

o By thinking about algorithms and working through the logic of an
application, flaws can be found that will improve a class model

Defining Internal Classes and Operations

� New, low-level operations need to be invented during the decomposition of high-
level operations.

� The expansion of algorithms may lead to create new classes of objects to hold
intermediate results.

 42

� ATM example

o The design details for the process transaction involves a customer receipt.

o The analysis class model did not include a receipt class, so it can be added
during design

Assigning Operations to Classes

� During design, introduce internal classes that do not correspond to real-world
objects but merely some aspect of them.

� Ask the following questions:

o Receiver of Action

o Query vs. Update

o Focal class

o Analogy to real world

� ATM Example: Internal operations for process transaction

o Customer.get Amount()

o Account.verifyAmount(amount)

o ATM.verifyAmount(amount)

o ATM.disburseFunds(amount)

� ATM Example: Internal operations for process transaction

o Receipt.PostTranscation()

o ATM.receive Funds(amount)

o Account.creidet(amount)

o Customer.getAccount()

ATM Domain Class model

 43

Exercises: EXCD 6

Write algorithms to draw the following figures on a graphics terminal. The figures are
not filled. Assume pixel-based graphics. State any assumptions that you make.

o Circle

o Ellipse

o Rectangle

o Square

Exercises: EXCD 6 - Answer

� Circle - Solution 1:

o For a circle of radius R centered at the origin, we have x2+y2 =R2

o Solving for y, we get y= ±(R2 – x2). We can generate a point for each x
coordinate by scanning x from –R to R in steps of one pixel and
computing y.

 44

o The center point of the circle must be added to each generated point.

� Solution 2:

o More sophisticated algorithms compute 8 points at once, taking advantage
of the symmetry about the axes, and also space the points so that there are
no gaps.

� Ellipse:

o Centered at the origin with axes A and B parallel to the coordinate
axes, we have (x/A)2+(y/B)2 =1

o We can solve for y in terms of x as for the circle.

o The equations are more complicated if the axes are not parallel to the
coordinate axes.

� Rectangle:

o A Rectangle of width 2A and height 2B with sides parallel to the
coordinate axes centered at (X, Y)

o Fill in all pixels with ordinates Y-B and

o Y+B between abscissas X-A and X+A, and fill in all pixels with abscissas
X-A and X+A between ordinates Y-B+1 and Y+B-1.

o If the rectangle is not parallel to the coordinate axes, then line segments
must be converted to pixel values.

� Square:

o drawing a rectangle whose sides are equal

Exercises: EXCD 7

Discuss whether or not the algorithm that you wrote in the previous exercise to draw
an ellipse is suitable for drawing circles and whether or not the rectangle algorithm is
suitable for squares.

Exercises: EXCD 7 – Answer

� Any algorithm that draws ellipses must draw circles, since they are ellipses, and
any algorithm that draws rectangles must draw squares.

� The real question is whether it is worthwhile providing special algorithms to draw
circles and squares

 45

� There is little or no advantage in an algorithm for squares, because both squares
and rectangles are made of straight lines anyway.

� An algorithm for circles can be slightly faster than one for ellipses.

� This may be of value in applications where high speed is required, but is probably
not worthwhile otherwise

Exercises: EXCD 8

� By careful ordering of multiplications and additions, the total number of
arithmetic steps needed to evaluate a polynomial can be minimized. For example,.
One way to evaluate the polynomial a4x4+a3x3+a2x2+a1x+a0 is to compute each
term separately, adding each term to the total as it is computed, which requires 10
multiplications and 4 additions.

� Another way is to rearrange the order of the arithmetic to
x.(x.(x.(x.a4+a3)+a2)+a1)+a0, which requires only 4 multiplications and 4
additions. How many multiplications and additions are required by each method
for an nth-order polynomial? Discuss the relative merits of each approach.

Exercises: EXCD 8 – Answer

• A general n-th order polynomial has the form . Each term
requires i multiplications and

 one addition (except the 0-th term), so computing the sum of the individual terms
 requires multiplications and n additions. Computing the

 sum by successive multiplication and addition requires one multiplication and one
 addition for each degree above zero, or a total of n multiplications and n

 additions.

• The second approach is not only more efficient than the first approach, it is better
behaved numerically, because there is less likelihood of subtracting two large
terms yielding a small difference.

• There is no merit at all to the first approach and every reason to use the second
approach.

Exercises: EXCD 9:

• Improve the class diagram by generalizing the classes, Ellipse and Rectangle to
the class GraphicsPrimitive, transforming the class diagram so that there is only a
single one-to-one association to the object class BoundingBox. In effect, you will
be changing the 0..1 multiplicity to exactly-one multiplicity. As it stands, the class
BoundingBox is shared between Eclipse and Rectangle. A BoundingBox is the
smallest rectangular region that will contain the associated Ellipse or Rectangle.

x
i

n

i

ia∑
=0

∑
=

+
=

n

i

nn
i

1 2

)1(

 46

Ellipse RectangleBounding Box

10..1 10..1

 Exercises: EXCD 9 - Answer:

Recursing Downward:

• Organize operations as layers

• Downward recursion proceeds in two main ways:

� By functionality and

� By mechanism

• Functionality Layer

� Take the required high-level functionality and break it into lesser
operations

� Combine similar operations and attach the operations to classes

� Operations that are carefully attached to classes have much less risk than
free-floating functionality

• ATM Example: rework on the operations that are assigned to classes

Mechanism Layers:

� Build the system out of layers of needed support Mechanisms.

� Various mechanisms are needed to store information, sequence control,
coordinate objects, transmit information, perform computations, and to
provide other kinds of computing infrastructure

� Any large system mixes functionality layers and mechanism layers. Reason is:

o A system designed entirely with functionality recursion is brittle and
supersensitive to changes in requirements

o A system designed entirely with mechanisms doesn’t actually do
anything useful.

ATM Example:

� Need for communications and distribution infrastructure

 47

� The bank and ATM computers are at different locations and must quickly and
efficiently communicate with each other

Refactoring

� It is good to use an operation or class for multiple purpose

� Definition: changes to the internal structure of software to improve its design without
altering its external functionality [Martin Fowler]

� ATM Example: operations of the process transaction use case

� Combine Account.credit(amount) and Account.debit(amount) into a single operation
Account.post(amount)

Mathematics: Factor:

� fac·tor

o One of two or more quantities that divides a given quantity without a
remainder, e.g., 2 and 3 are factors of 6; a and b are factors of ab

� fac·tor·ing

o To determine or indicate explicitly the factors of

SE: Factoring:

� fac·tor

o The individual items that combined together form a complete software
system:

o identifiers

o contents of function

o contents of classes and place in inheritance hierarchy

� fac·tor·ing

o Determining the items, at design time, that make up a software system

Refactoring:

� Process of changing a software system in such a way that it does not alter the
external behavior of the code, yet improves its internal structure [Fowler'99]

� A program restructuring operation to support the design, evolution, and reuse
of object oriented frameworks that preserve the behavioural aspects of the
program [Opdyke'92]

Specifics:

� Source to source transformation

� Remain inside the same language, e.g., C++ to C++

� Does not change the programs behavior

 48

� Originally designed for object-oriented languages, but can also be applied to
non-object oriented language features, i.e., functions

Levels of Software Changes:

� High Level

o Features to be added to a system

o e.g., New feature

� Intermediate Level

o Change design (factoring)

o e.g., Move a member function

� Low Level

o Change lines of code

o e.g., Changes in (a least) two classes

Relationship to Design:

� Not the same as “cleaning up code”

o May cause changes to behavioral aspects

o Changes often made in a small context or to entire program

� Key element of entire process in agile methodologies

� Views design as an evolving process

� Strong testing support to preserve behavioral aspects

Quick Examples:

� Introduce Explaining Variable

� Rename Method

� Move Method

� Pullup Method

� Change Value to Reference

� Remove Parameter

� Extract Hierarchy

Why: Design Preservation:

� Code changes often lead to a loss of the original design

� Loss of design is cumulative:

 49

o Difficulties in design comprehension ->
Difficulties in preserving design ->
More rapid decay of design

� Refactoring improves the design of existing code

Catalog:

� Collected by Fowler

� Refactoring entry composed of:

o Name

o Summary

o Motivation

o Mechanics

o Examples

� Based on Java

Tools:

� Smalltalk Refactoring Browser

o Development environment written in Smalltalk

o Allows for Smalltalk source code to transform Smalltalk source code

o Comments as a first-class part of the language

� XRefactory

o Allows standard refactorings for C++

Challenges:

� Preservation of documentary structure (comments, white space etc.)

� Processed code (C, C++, etc.)

� Integration with test suite

� Discovery of possible refactorings

� Creation of task-specific refactorings

Limitations:

� Tentative list due to lack of experience

� Database

 50

o Database schema must be isolated, or schema evolution must be
allowed

� Changing Published Interfaces

o Interfaces where you do not control all of the source code that uses the
interface

o Must support both old and new interfaces

o Don't publish interfaces unless you have to

 51

Company Person SkillEmploys

*1

HasSkill

**

Design Optimization

� Good way to design a system: first get the logic correct and then optimize it

� The design model builds on the analysis model.

� Analysis model – captures the logic of a system

� Design model – adds development details

� Design Optimization involves the following tasks:

o Provide efficient access paths

o Rearrange the computation for greater efficiency

o Save intermediate results to avoid recomputation

� Adding redundant associations for efficient access

o Design has different motivations and focuses on the viability of a
model for implementation

� Some improvements for the above analysis class model

o use hashed set for HasSkills

o ex: japanese speaking

o indexing

� In cases where the number of hits from a query is low because few objects satisfy

the test, an index can improve access to frequently retrieved objects.

� Indexes incur a cost:

o Require additional memory

o Require to be updated whenever the base associations are updated

 52

� Examine each operation and see what associations it must traverse to obtain its
information

o For each operation

• Frequency of access

• Fan-out

• Selectivity

� Provide indexes for frequent operations with a low hit ratio, because such operations
are inefficient when using nested loops to traverse a path in the network

� Elaborate the class model

� ATM Example:

� postTransaction() operation

o Relate Receipt to CashCard (Assigning operations to classes)

o Tracing from CashCard to CardAuthorization to Customer has no fan-out

o Derived association from Bank to Update speed the process

Rearranging Execution Order for Efficiency:

� One key to algorithm optimization is to eliminate dead paths as early as
possible

� ATM Example:

� Maintain two different derived associations between Bank and Update, one
for individuals and the other for businesses

Saving Derived Values to Avoid Recomputation:

� Define new classes to cache derived attributes and avoid recomputation.

� Three ways to handle updates:

o Explicit update

o Periodic recomputation

o Active values

� ATM Example:

o For convenience, we might add the class SuspiciousUpdateGroup

Exercises: EXCD 10

� Prepare pseudo code for the following operations to classes in the class diagram

o Find the event for a figure and meet.

o Register a competitor for an event.

 53

o Register a competitor for all events at a meet.

o Select and schedule events for a meet.

o Assign judges and scorekeepers to stations.

Exercises: EXCD 10 – Answer

� Find the event for a figure and meet.

Figure::findEvent (aMeet: Meet) : Event;

 return self.Event INTERSECT aMeet.Event;

 // Note that 0, 1, or more events could be returned.

� Register a competitor for an event.

Competitor::register (anEvent: Event);

 If self.Event is not null then return;

 // already registered

 create new RegisteredFor link between self and anEvent

� Register a competitor for all events at a meet.

Competitor::registerAllEvents (aMeet: Meet)

 For each anEvent in aMeet.Event

 54

 self.register(anEvent);

� Select and schedule events for a meet.

Meet::addFigure (aFigure: Figure)

 Create an event object

 Associate it with the meet

 Associate it with the figure

� Meet::scheduleAllEvents ()

 while events have not been scheduled do

 for each aStation in self.Station do

 anEvent := get next unscheduled event in

 self.Event

 if no more events then return;

 associate anEvent to aStation;

� Assign judges and scorekeepers to stations

 Meet::assignPersonnel (judges, scorekeepers)

 Sort the judges and scorekeepers in priority order;

 averageJudges := numberOfJudges /

 numberOfStations;

 averageScorekeepers :=

 numberOfScorekeepers / numberOfStations;

if averageJudges < minimumPermitted then error;

 if averageScorekeepers < minimumPermitted then error;

 neededJudges:= minimum (averageJudges, maximumPermitted);

 neededScorekeepers :=

 minimum (averageScorekeepers, maximumPermitted);

for each station:

 assign the next neededJudges judges and

 neededScorekeepers scorekeepers.

 55

Notify any remaining judges and scorekeepers that they are not

needed.

Exercises: EXCD 11

• Improve the class diagram by transforming it, adding the class Political Party.

Associate Voter with a party. Discuss why the transformation is an improvement.

Exercises: EXCD 11 – Answer

• Political party membership is not an inherent property of a voter but a changeable
association.

• The revised model better represents voters with no party affiliation and permits
changes in party membership.

Exercises: EXCD 11 – Answer

• If voters could belong to more than one party, then the multiplicity could easily be
changed.

• Parties are instances, not subclasses, of class PoliticalParty and need not be
explicitly listed in the model; new parties can be added without changing the
model and attributes can be attached to parties.

 56

Exercises: EXCD 12

• Refine the class diagram by eliminating the associations to the classes End and
Relationship, replacing them with associations to the subclasses of End and
Relationship.

Reification of Behavior

• Behavior written in code is rigid.
• To store, pass, or modify the behavior at run time, it should be reified
• Reification is the promotion of something that is not an object into an object.
• By reifying behavior, it can be stored, passed to other operations, and can be

transformed.

Reification of Behavior

• Example 1: Database Manager
� A database manager has abstract functionality that provides a general-

purpose solution to accessing data reliable and quickly for multiple users

Reification of Behavior

• Example 2: State-transition diagrams
� Prepare a metamodel and store a stste-transition model as data. A general-

purpose interpreter reads the contents f the metamodel and executes the
intent

 57

Reification of Behavior

Exercises-EXCD 13

• Revise the class diagram to eliminate use of multiple inheritance

Reification of Behavior

• In one sense you can regard the tasks of a recipe as operations
• In another sense they could be data in a class model

Reification of Behavior

• The behavioral patterns that reify behavior
� Encoding a state machine as a table with a run-time interpreter – State
� Encoding a sequence of requests as parameterized command objects –

Command
� Parameterizing a procedure in terms of an operation that it uses - Strategy

 58

Adjustment of Inheritance

• Adjust the definitions of classes and operations to increase inheritance by:
� Rearrange classes and operations to increase inheritance
� Abstract common behavior out of groups of classes
� Use delegation to share behavior when inheritance is semantically invalid

Rearrange Classes and Operations

• Adjustments to increase the chance of inheritance
� Operations with optional arguments
� Operations that are special cases
� Inconsistent names
� Irrelevant operations

Rearrange Classes and Operations

• ATM Example:

� An ATM can post remote transactions on a receipt. It should be able to
issue a receipt for cashier transactions.

� A receipt for a RemoteTransaction involves CashCard, while a receipt for
CashierTransaction directly involves a Customer.

Rearrange Classes and Operations

• ATM Example:

� The cashier software is apart from the ATM software.
� Two different kinds of receipts, a RemoteReceipt and a CashierReceipt.

Abstracting out common behavior

• Abstracting out a common superclass or common behavior.
• Make only abstract superclasses.
• It is worthwhile to abstract out a superclass even when the application has only

one subclass that inherits from it.
• Consider the potentially reusable classes for future applications.

 59

Abstracting out common behavior

• The splitting of a class into two classes that separate the specific aspects from the
more general aspects is a form of modularity improves the extensibility of a
software product

• Generating customized versions of the software to match each different
configuration could be tedious

Abstracting out common behavior

• ATM example:
� We did pay attention to inheritance during analysis when we constructed

the class model. We do not see any additional inheritance at this time. In a
full-fledged application there would be much more design detail and
increased opportunities for inheritance.

Using Delegation to Share Behavior

• Sharing of behavior is justifiable only when a true generalization relationship
occurs.

• Discourage this inheritance of implementation because it can lead to incorrect
behavior.

� E.g. A stack class and a list class is available. One object can selectively
invoke the desired operations of another class, using delegation rather than
inheritance.

Using Delegation to Share Behavior

• Delegation consists of catching an operation on one object and sending it to a
related object.

Organizing a Class Design

• Programs consist of discrete physical units that can be edited, compiled, imported,
or otherwise manipulated.

• The organization of a class design can be improved with the following steps.

 60

� Hide internal information from outside view.
� Maintain coherence of entities.
� Fine-Tune definition of packages.

Organizing a Class Design
• Information hiding: carefully separating external specification from internal

implementation

Organizing a Class Design

• Ways to hide information
� Limit the scope of class-model traversals.
� Do not directly access foreign attributes.
� Define interfaces at a high a level of abstraction.
� Hide external objects.
� Avoid cascading method calls.

Coherence of Entities

• Coherence is another important design principle.
• An entity, such as a class, an operation, or a package, is coherent if it is organized

on a consistent plan and all its parts fit together toward a common goal.

Coherence of Entities

• Policy: making of context-dependent decisions.
• Implementation: execution of fully- specified algorithms.
• Separating policy and implementation greatly increases the possibility of reuse.

Coherence of Entities

• E.g. consider an operation to credit interest on a checking account. Interest is
compounded daily based on the balance, but all interest for a month is lost if the
account is closed.

• A class should not serve too many purposes at once.
Fine- Tuning packages

• During analysis the class model is partitioned into packages
• The interface between two packages consists of the associations that relate classes

in one package to classes in the other and operations that access classes across
package boundaries

Fine- Tuning packages
• Packages should have some theme, functional cohesiveness, or unity of purpose
• Try to keep strong coupling within a single package

Final ATM domain class model after class design

 61

Exercises: EXCD 14

In selecting an algorithm, it may be important to evaluate its resource requirements. How
does the time required to execute the following algorithm depend on the following
parameters: On the depth of the inheritance hierarchy.

 62

Exercises: EXCD 14

Algorithm:
 traceInheritancePath (class1, class2): Path
 { path := new Path;
 // try to find a path from class1 as descendent of class2
 classx := class1;
 while classx is not null do add classx to front of path;
 if classx = class2 then return path;
 classx := classx.getSuperclass();

Exercises: EXCD 14

// didn’t find a path from class1 up to class2
 // try to find a path from class2 as descendent of

class 1
path.clear();
classx := class2;
while classx is not null do add classx to front of path;
if classx = class1 then return path;
classx := classx.getSuperclass();

Exercises: EXCD 14

// the two classes are not directly related
 // return an empty path path.clear(); return path; }
 Class::getSuperclass (): Class
 { for each end in self.connection do:
 if the end is a Subclass then:
 relationship := end.relationship;
 if relationship is a Generalization then:
 otherEnds := relationship.end;
 for each otherEnd in otherEnds do:
 if otherEnd is a Superclass then: return otherEnd.class
 return null;

Exercises: EXCD 14 – Answer

• In the worst case, if we search the wrong way first by chance, then the search will
go to the top of the class hierarchy, so the cost is linear in the depth.

 63

Exercises: EXCD 14 – Answer

• If we modify the algorithm so that we search up from both classes at the same
time, then the search cost will be no more than twice the difference in depth of the
two classes and will not depend at all on the depth of the class hierarchy (except
as a limit on the difference in depths).

• If the class hierarchy is very deep, then the algorithm should be modified to limit
the cost, otherwise the added complexity is probably not worth the bother.

 64

Implementation Modeling

Implementation is the final development stage that addresses the specifics of
programming languages.

Overview of Implementation

 Implementation capitalizes on careful preparation from analysis and design.
Implementation modeling involves the following steps:

• Fine-tune classes

• Fine-tine generalizations

• Realize associations

• Prepare for testing

Fine-tune classes and Fine-tine generalizations are motivated by theory of
transformations. A transformation is a mapping from the domain of models to the range
of models.

Fine-tuning classes

The purpose of implementation is to realize the models from analysis and design. To
alter the design classes consider the possibilities:

• Partition a class

• Merge classes

• Partition/merge attributes

• Promote an attribute/demote a class

Partition a class: The information in a single class can be split into two classes. The
class diagram in Figure 1 represents home and office information.

Figure-1: Partitioning a class

Partitioning of a class can be complicated by generalization and association. Figure 2
shows partitioning a class by generalization and association.

 65

Figure-2: Partitioning a class by generalization and association

Merge classes: The converse to partitioning a class is to merge classes. Figure 3 shows
an example with intervening associations.

Figure-3: Merging classes

Partition/merge attributes: Attributes can be adjusted by partitioning and merging, as
Figure 4 illustrates.

Figure-4: Partitioning/merging classes

 66

Promote an attribute/demote a class: It is illustrated in Figure 5

Figure-5: Promoting an attribute/demoting a class

ATM example:

If pre-populating address data, split Customer address into several related classes. E.g.
preload city, stateProvince, and postalCode when creating a new Customer record.

Fine-tuning Generalizations:

It is helpful to remove or add a generalization prior to coding. Figure 6 shows a
translation model.

Figure-6: Removing/adding generalization

ATM example:

ATM domain class model encompassed two applications.

• ATM

• cashier

Figure 7 presents the ATM domain class model (Design).

 67

Figure-7: ATM domain class model (Design)

Deleting cashier information from the domain class model, leads to a removal of both
generalizations.

Figure-8: ATM domain class model (Design) showing removal of generalizations

Figure 9 shows ATM Implementation Model – domain class model and Figure 10 shows
ATM Implementation Model – application class model

 68

Figure 9 ATM Implementation Model – domain class model

Figure 10 ATM Implementation Model – application class model

Realizing Associations:

 Associations are the “glue” of the class model, providing access paths between
objects. Strategies for analyzing association traversal

 69

• Analyzing Association Traversal

• One-way Associations

• Two-way Associations

• Advanced Associations

Analyzing Association Traversal:

Implementation of associations, which are traversed in only one direction, can be
simplified. For prototype work, use bidirectional associations, flexible to add new
behavior and modify the application.

Analyzing Association Traversal:

If an association is traversed only in one direction, implement it as a pointer.

� Simple pointer - multiplicity is “one”

� Set of pointers - multiplicity is “many”

Figure-11: Implementing a one-way association with pointers

Two-way Associations:

Associations traversed in both directions. Approaches for implementation are:

� Implement one-way.

� Implement two-way: Implement with pointers in both directions as Figure
12.

� Implement with an association object: An association object is a set of
pairs of associated objects. Stored in a single variable-size object.

Figure-12: Implementing a two-way association with pointers

 70

Figure-12: Implementing an association as an object

Advanced Associations:

Techniques for implementing advanced associations are:

� Association classes.

� Ordered associations.

� Sequences.

� Bags.

� Qualified associations.

� N-ary associations.

� Aggregation.

Testing:

Testing is a quality-assurance mechanism for catching residual errors. The
number of bugs found for a given testing effort is an indicator of software quality.

• Analysis - test the model against user expectations by asking questions and seeing
if the model answers them.

• Design - test the architecture and can simulate its performance.

• Implementation - test the actual code-the model serves as a guide for paths to
traverse.

Testing should progress from small pieces to ultimately the entire application; Unit
testing, Integration testing.

• Famous Problems – 1: F-16 : crossing equator using autopilot

– Result: plane flipped over

– Reason?

• Reuse of autopilot software

• Famous Problems – 2: The Therac-25 accidents (1985-1987), quite possibly the
most serious non-military computer-related failure ever in terms of human life (at
least five died)

 71

– Reason: Bad event handling in the GUI

• Famous Problems – 3: NASA Mars Climate Orbiter destroyed due to incorrect
orbit insertion (September 23, 1999)

– Reason: Unit conversion problem

Testing Fundamentals:

Software Testing is a critical element of Software Quality Assurance. It represents
the ultimate review of the requirements specification, the design, and the code. It is the
most widely used method to insure software quality. Many organizations spend 40-50%
of development time in testing.

Testing is concerned with establishing the presence of program defects.
Debugging is concerned with finding where defects occur (in code, design or
requirements) and removing them. (Fault identification and removal). Even if the best
review methods are used (throughout the entire development of software), testing is
necessary. Testing is the one step in software engineering process that could be viewed as
destructive rather than constructive. “A successful test is one that breaks the software.” A
successful test is one that uncovers an as yet undiscovered defect. Testing cannot show
the absence of defects, it can only show that software defects are present. For most
software exhaustive testing is not possible.

Testing Object-Oriented Applications: Why is it Different?

• No sequential procedural executions

• No functional decomposition

• No structure charts to design integration testing

• Iterative O-O development and its impact on testing and integration strategies

Testing Object-Oriented Applications – Issues:

• Implications of inheritance

– New context of usage

– Multiple Inheritance

– True specialization -- reuse of test cases

– Programming convenience -- must test subclasses and superclasses

• Implications of encapsulation

– Makes reporting on state difficult

– Correctness proof may help but difficult

• Implications of Polymorphism

– Each possible binding requires separate test

– Makes integration more difficult

• White-box testing

 72

– Appropriate only for methods not for classes

– Control graph testing is not applicable to methods

• Black-box testing

– Applicable to classes

– The distance between OO specification and implementation is small
compared to conventional systems

• Integration strategy

– Thread-based: All classes needed to respond to certain external input

– Uses-based: Starts with classes that do not use other classes; then continue
with classes that use the first group and so on.

• Test process strategy

– Design a little, code a little, and test a little cycle

Unit testing: Developers normally check their own code and do the unit and integration
testing, because they understand the detailed logic and likely sources of error.

• What is a unit?
– A single, cohesive function?
– A function whose code fits on one page?
– The amount of code that can be written in 4 to 40 hours?
– Code that is assigned to one person?

• In object-oriented programs, a unit is a method within a class.

Methods for Generating Test Cases:

• Statement coverage
• Graph based

– Branch coverage
– Condition coverage
– Path coverage

• All unit testing methods are also applicable to testing methods within a class.
Integration Testing:

• Strategies:
– Bottom-up guided by functional decomposition tree
– Top-down guided by functional decomposition tree
– Big bang
– Pairwise

• All focus on structure and interface
• Performed exclusively in terms of inputs and outputs of the system
• Performed mostly on the target platform
• Thread-based:

– The behavior that results from a system level input

– An interleaved sequence of system inputs (stimuli) and outputs
(responses)

 73

– A sequence of transitions in a state machine model of the system

System Testing:

QA should derive their testing from the analysis model of the original requirements and
prepare their test suite in parallel to other development activities. The scenarios of the
interaction model define system-level test case. Pay attention to performance and stress
the software with multiuser and distributed access, if that is appropriate. As much as
possible use a test suite.

• Performed exclusively in terms of inputs and outputs of the system
• Performed mostly on the target platform
• Thread-based:

– The behavior that results from a system level input
– An interleaved sequence of system inputs (stimuli) and outputs

(responses)
– A sequence of transitions in a state machine model of the system

ATM example: We have carefully and methodically prepared the ATM model.
Consequently we would be in a good position for testing, if we were to build a production
application.

The OO Testing Pyramid:

Method Testing:

• Tests each individual method
• Performed by the programmer
• Glass box using method code

– Statement Coverage
– Decision Coverage

– Path Coverage

Class Testing:

• Traditional black-box and white-box techniques still apply
 E.g. testing with boundary values

 74

 Inside each method: at least 100% branch coverage; also, DU-pairs inside a method
• Extension: DU pairs that cross method boundaries

Example: inside method m1, field f is assigned a value; inside method m2, this
value is read.

Legacy Systems

Most development does not involve new applications but rather evolves existing ones
It is difficult to modify an application if you don’t understand its design

What is Reverse Engineering?

General definition: A systematic methodology for analyzing the design of an existing
device or system, either as an approach to study the design or as a prerequisite for re-

design.

Reverse Engineering helps you to:

Develop a systematic approach to thinking about the engineering design of devices
and systems

Acquire a mental data bank of mechanical design solutions

Levels of Analysis in Reverse Engineering

System-Wide Analysis
Subsystem Dissection Analysis
Individual Component Analysis

System-Wide Analysis

Customer Requirements
Engineering Requirements
Functional Specifications
Prediction of Subsystems and Components

Subsystem Dissection Analysis

Document Disassembly

Define Subsystems

Determine Subsystem Functional Specifications

Determine Subsystem Physical/Mathematical Principles
Individual Component Analysis

Repeat Dissection Steps to Individual Component

Define Component Material Selection and Fabrication Process

Suggest Alternative Designs, Systems, Components, and Materials
What is Reverse Engineering ?

You have an unexpected case:
You finished one course project using Java

 75

Requirement

analysis

design

Implementation

Testing and

Maintenance

Your program runs OK
But, by accident, you delete the java file
How to hand in your project?

Reverse Engineering
What is Reverse Engineering?

RE encompasses any activity that is done to determine how a product works, to learn
the ideas and technology that were used in developing that product.
RE can be done at many levels
RE generally belongs to Software Maintenance

What is Reverse Engineering ?

Waterfall Model of software development

Reverse Engineering-SE context

Trying to figure out the structure and behaviour of existing software by building
general-level static and dynamic models’
Links:

http://www.rigi.csc.uvic.ca/UVicRevTut/F4rev.html

Compact information on reverse engineering
http://users.ece.gatech.edu/~linda/revengr/revrepos.html

Reengineering Resource Repository
Listings of tools, literature, …

The Early Days of RE

Law of Software Revolution (Lehman, 1980)
Fundamental strategies for program comprehension (Brooks, 1983)
Taxonomy of Reverse Engineering (Chikofsky&Cross, 1990)
WCRE (Working Conference on R.E., 1990)
• IWPC (Int. Workshop on Program Comprehension)

Why do we need RE ?

• Recovery of lost information
� providing proper system documentation

 76

• Assisting with maintenance
� identification of side effects and anomalies

• Migration to another hw/sw platform
• Facilitating software reuse

• Benefits

� maintenance cost savings
� quality improvements
� competitive advantages
� software reuse facilitation

Difficulties of Reverse Engineering

• Gap between problem
 /solution domain

• Gap between concrete
 and abstract

• Gap between coherency/disintegration
• Gap between hierarchical/associational

Scope and Task of Reverse Engineering

• program understanding

• Reverse Engineering is focused on the challenging task of understanding legacy
program code without having suitable documentation

• However, the major effort in software engineering organizations is spent after
development,on maintaining the systems to remove existing errors and to adapt
them to changed requirements.

Reverse Engineering

• mature software systems often have incomplete, incorrect or even nonexistent
design documentation.

• Ideally, the system documentation describes the product and the complete design,
including its rationale.

• The major purpose of tools essentially is to aid maintainers understand the

program
• Pure plan recognition is unlikely to be powerful enough to drive reverse

engineering for the following reasons:
 -legacy code is written using rather tricky encodings to achieve better efficiency
 - all the necessary plan patterns in all the variations must be supplied in advance
for a particular application,
 -different abstract concepts map to the same code within one application

• A huge amount of conventionally developed software exists and such systems
will continue to be developed for a long time.

• These systems have errors and continual demand for the enhancement of their
functional and performance requirements

 77

Requirements

Analysis

Design

Implementation

• They are often badly designed and have an incomplete, nonexistent, or, even
worse, wrong documentation without any design information, this is a challenging
task.

Forward Engineering Reverse Engineering

Given requirements, develop an
application

Given an application, deduce tentative
requirements

More certain Less certain

Prescriptive Adaptive

More mature Less mature

Time consuming 10 to 100 times faster than forward
engineering

 78

Applications

• Modifying software
� Change of environment (software migration)
� Re-designing software (re-engineering)

• E.g. Y2K, €, e-commerce
• Design and implementation in

forward engineering, e.g. debugging
• Program understanding/comprehension
• Program visualisation
• Software re-use

Data reverse engineering
• ” Data reverse engineering focuses on data and data-relationships both among

data structures within programs and data bases”
• For example: relational data bases (RDBs):

Reverse engineering
• Redocumentation
• Restructuring

� transforming a system from one representation to another, while
preserving its external functional behavior

• Retargeting
� transforming and hosting or porting the existing system in a new

configuration
• Business Process Reengineering

� radical redesign of business processes to increase performance, such as
cost, quality, service, and speed

� reoptimization of organizational processes and structures
• Reverse specification

� extracting a description of what the examined system does in terms of the
application domain

� a specification is abstracted from the source code or design description
Software reverse engineering

• Chikofsky & Cross: two-phase process
� Collecting information

• parsers, debuggers, profilers, event recorders
� Abstracting information

• Making understandable, high-level models
• “Programmers have become part historian, part detective, and part clairvoyant”

(T.A.Corbi 1989)

 79

• Inputs to Reverse Engineering
� Programming code
� Database structure
� Data
� Forms and reports
� Documentation
� Application understanding
� Test cases

Reverse Engineering
• Outputs from Reverse Engineering

� Models
� Mappings
� Logs

Building the Class Model
• Building the class model using three phases

� Implementation Recovery
� Design Recovery
� Analysis Recovery

Building the Class Model

• Implementation Recovery
o Learn about the application and create an initial class model
o Study the data structures and operations and manually determine classes
o Have an initial model focused on the implementation

• Design Recovery

� The multiplicity in reverse direction is typically not declared and it must
be determined from general knowledge or examination of the code

� Many implementations use a collection of pointers to implement an
association with “many multiplicity”

� Pointers will implement both association directions
Building the Class Model

• Design Recovery

� The multiplicity in reverse direction is typically not declared and it must
be determined from general knowledge or examination of the code

� Many implementations use a collection of pointers to implement an
association with “many multiplicity”

� Pointers will implement both association directions
• Analysis Recovery

� If the source code is not object oriented, infer generalizations by
recognizing similarities and differences in structure and behavior

Building the Interaction Model

• The purpose of each method is clear but the way that objects interact to carry out
the purposes of the system is hard to understand from the code

• A slice is a subset of a program that preserves specified projection of its behavior

 80

• The accumulated code lets the project an excerpt of behavior from the original
program

• The purpose of each method is clear but the way that objects interact to carry out
the purposes of the system is hard to understand from the code

• A slice is a subset of a program that preserves specified projection of its behavior
• The accumulated code lets the project an excerpt of behavior from the original

program
• The power of slice comes from

� They can be found automatically
� Slices are generally smaller than the programs from which they originated
� They execute independently of one another
� Each reproduces exactly a projection of the original program’s behavior

Building the State Model

• To construct a state model
� Fold the various sequence diagrams for a class together by sequencing

events and adding conditions and loops
� Augment the information in the sequence diagrams by studying the code

and doing dynamic testing
� Initiation and termination correspond to construction and destruction of

objects
Reverse Engineering Tips

• Distinguish supposition from facts
• Use a flexible process
• Expect multiple interpretations
• Don’t be discouraged by approximate results
• Expect odd constructs
• Watch for a consistent style

Wrapping

• A wrapper is a collection of interfaces that control access to a system
• Consists of a set of boundary classes that provide the interfaces
• Provides a clean interface for exposing the core functionality of existing

applications
• New functionality can be added as a separate package
• Example

� Web Application
• Wrapping is temporary solution

� Constrained by the organization of the legacy systems
� Original old code, the wrapper and code in a different format become so

unwieldy and it must be rewritten
• The use of XML as a gateway for communication between the legacy systems and

the modern world

 81

Source code vs.

binaries

• Source code

– better form of representation
– not always possible
– result depends on the parser (notable differencies)

• Binaries

– faster information collection (e.g. Java byte code)
– legality issues

Usage of binaries

(reverse engineering, decompilation, disassembly)

• Recovery of lost source code
• Migration of applications to a new hardware platform
• Translation of code written in obsolete languages not supported by compiler tools

nowadays
• Determination of the existence of viruses or malicious code in the program
• Recovery of someone else's source code (to determine an algorithm for example)

Binary copyrights

(decompilation, disassembly)

• Not all countries implement the same laws !
• Commonly allowed by law

� for the purposes of interoperability
� for the purposes of error correction where the owner of the copyright is

not available to make the correction
� to determine parts of the program that are not protected by copyright (e.g.

algorithms), without breach of other forms of protection (e.g. patents or
trade secrets)

 82

• The decompilation page:
http://archive.csee.uq.edu.au/~csmweb/decompilation/

home.html

Copyrights cont.

• EU: 1991 EC Copyright Directive on Legal Protection of Computer Programs
provided extensions to copyright to permit decompilation in limited
circumstances

• An example: Sony sued Connectix Corp (1999) for developing of its Virtual
Game Station emulator, and emulator of the Sony developed PlayStation (Mac)
-> a long fight over emulation rights and extent of copyright protection on
computer programs

Reverse Engineering Tools

• Analysis Tools

• Browsers

• Object Server

• Task Oriented Tools
Example--Java Decompiler

• How to recover bytecode from .class file under Unix/Win with JDK?
% javap -c <filename>
% javap -help (to see the options)

• Java Decompilers
� ”ClassCracker” http://www.pcug.org.au/~mayon/
� “DeCafe Pro" from DeCafe, France at

http://decafe.hypermart.net/index.htm
� “SourceAgain" from Ahpah corp at http://www.ahpah.com

Example--Java Decompiler

• ClassCracker 2 Interface

• Components of ClassCracker 2
� Java decompiler

 83

• retrieves Java source code from Java class files
� Java disassembler

• produces Java Assembly Code
� A Java class file viewer

• displays Java class file structures.
• Features of ClassCracker 2

� User visual interface.
� Can decompile class files within zip or jar files.
� Conversion mode (JAVA, JASM or JDUMP) is selectable
� A Batc Mode allows multiple class files to be decompiled simultaneously
� more…...

• ClassCracker 2.0--want to try it?
� Free download at

http://www.pcug.org.au/~mayon/classcracker/ccgetdemo.html
� Only first three methods are decoded.

• Bridge 1.0---Free
� http://www.geocities.com/SiliconValley/Bridge/8617/jad.html

Exercises: EXIM 1:

Implement each association in ATM implementation model. Use one-way or two-way
pointers as the semantics of the problem dictates. Explain your answers.

Exercises: EXIM 1: Answer

• An arrow indicates that the association is implemented in the given direction.
Because of the large amounts of data for an ATM we used two-way pointers for
associations that are traversed in both directions—we avoided one-way pointers
combined with backward searching. Note that most of the associations in the
domain model may be traversed either way, but associations for the application
model are traversed only one way.

• ATM <–> RemoteTransaction

• This association would be implicit for the ATM. However, it would be
needed for the consortium and bank computers. Given a transaction we
must be able to find the ATM. Given an ATM we might want to find all
the transactions for a summary report.

• RemoteTransaction <–> Update

• Obviously we must be able to find the updates for a transaction. However,
we also must be able to go the other way. We might find the updates for
an account and then need to find the transactions, such as to get the date
and time.

• CashCard <–> CardAuthorization

• A cash card must know its authorization. An authorization must also know
about its cash cards.

 84

• Bank <–> CardAuthorization

• An authorization must be able to reference its bank and a bank must be
able to find all authorizations (to facilitate issuing of card codes).

• CashCardBoundary <– AccountBoundary

• This association is purely an artifact for the convenience of importing and
exporting data.

• TransactionController –> RemoteTransaction

• A transaction controller must know about its transactions. There is no need
to go the other way.

• Consequently, there is no need to implement the association in both directions.
We will choose to have pointers that retrieve cash card data for an account. (The
decision on which way to implement is arbitrary and we could do it the other
way.)

• TransactionController –> RemoteTransaction

• A transaction controller must know about its transactions. There is no need
to go the other way.

Exercises: EXIM 2:

Implement each association in the class diagram. Use one-way pointers wherever
possible. Should any of the association ends be ordered? Explain your answers.

Exercises: EXIM 2: Answer

• An arrow indicates that the association is implemented in the given direction.

• Text <–> Box

� The user can edit text and the box must resize, so there should be a pointer
from text to box. Text is only allowed in boxes, so we presume that a user
may grab a box and move it, causing the enclosed text to also move. So
there should be a pointer from box to text.

• Connection <–> Box

� A box can be dragged and move its connections, so there must be pointers
from box to connections. Similarly, a link can be dragged and move its

 85

connections to boxes, so there must also be a pointer from connection to
box. There is no obvious ordering.

• Connection <–> Link

� Same explanation as Connection <–> Box

• Collection –> ordered Box

� Given a collection we must be able to find the boxes.

� There does not seem to be a need to traverse the other way. There likely is
an ordering of boxes, regarding their foreground / background hierarchy
for visibility

• Collection –> ordered Link

� Same explanation as

 Collection –> ordered Box

 86

