

 1

OBJECT-ORIENTED MODELING AND DESIGN

Class Modeling

CONTENTS:

1. Object and Class Concepts.

2. Link and Association Concepts

3. Generalization and Inheritance

4. A Sample Class Model

5. Navigation of Class Models

6. Summary

Class Modeling:

Captures the static structure of a system by characterizing the objects in the system, the

relationships between the objects, and the attributes and operations for each class

1. Object and Class Concepts:

Object: is a concept, abstraction, or a thing with identity that has meaning for an

application Eg. two apples) each have identity and are distinguishable.

Class: Describes a group of objects with the same properties(attributes), behavior

(operations), kinds of relationship, and Semantics. (Eg: Person, company, Process and

Window)

Class Diagram: Provide a Graphical notation for modeling classes and their

relationships, thereby describing possible objects as shown in figure 1.

Object Diagram: Shows individual Objects and their relationships.

Figure 1: A Class and Objects: Objects and Classes are the focus of Class Modeling

Person

Class Objects

JoeSmith:Person MarySharp:Person :Person

 2

Values: A Value is a piece of data. Attributes: named property of class. These elaborate

classes as shown in figure 2.

Figure 2: Attributes and Values.

Operations: is a function or procedure that may be applied to or by objects in a class as

shown in figure 3.

Methods: is a implementation of an operation for a class.

Polymorphism: same operation applied to many different class.

Signature: all methods must have same signature ie print should not have filename as

argument for one method and filepointer as argument for other.

Feature: generic word for either an attribute or operation.

Figure 3 : Operations : function that may be applied to or by objects in a class.

Summary of notations for classes: Figure 4 summarizes the notations for classes.

MarySharp:Person

name=“Mary Sharp”
birthdate=16 March 1950

JoeSmith:Person

name=“Joe Smith”
birthdate=21 October 1983

name: string

Person

birthdate: date

Class with Attributes Objects with Values

name

Person

changeJob

fileName

File

print

GeometricObject

color

move (delta : Vector)

sizeInBytes
lastUpdate

birthdate position

changeAddress select (p : Point): Boolean
rotate (in angle : float = 0.0)

 3

Figure 4: Summary of modeling notations for classes: A Box represents a class and

may have as many as three components.

The compartments in the box contain, from top to bottom: class name, list of attributes,

and list of operations. Optional details are type, default values, argument list and result

type may follow each operation name.

2. Link and Association Concepts:

Figure 5: Many to Many Associations

attributeName1 : dataType1 = defaultValue1

ClassName

attributeName2 : dataType2 = defaultValue2

operationName1 (argumentList1) : resultType1
operationName2 (argumentList2) : resultType2

. . .

. . .

Jeff:Person

name=“Jeff”

OwnsStock

Class diagram

Object diagram

*

John:Person

name=“John”

Mary:Person

name=“Mary”

Sue:Person

name=“Sue”

Alice:Person

name=“Alice”

Company

name

Person

name

GE:Company

name=“GE”

IBM:Company

name=“IBM”

*

 4

Link: is a physical / conceptual connection among objects most links relate two objects,

 but some links relate 3 or more object. It is an instance of association as shown in figure

5 above.

Association: is a description of a group of links with common structure and common

 semantics as in the class diagram shown in figure 5.

Multiplicity: Specifies the number of instances of one class that may relate to single

instance of other class. Similar to Cardinality ratio in DBMS as shown in the following

figures 6,7,8.

UML specifies: “1”: exactly one,

 “1 ..*” (one or more)

 “3..5” (three to five inclusive)

Figure 6: One-to-one Association

Figure 7:Zero-to-one multiplicity

Dakar:CapitalCity

name=“Dakar”

Paris:CapitalCity

name=“Paris”

Ottawa:CapitalCity

name=“Ottawa”

Senegal:Country

name=“Senegal”

HasCapital

HasCapital

HasCapital

Country

name

HasCapital

Class diagram

Object diagram

CapitalCity

name

Canada:Country

name=“Canada”

France:Country

name=“France”

1 1

Workstation Window
console

1 0..1

 5

Figure 8: Association Vs Link

 Figure: Multiple association to model multiple links

Figure 9 Association Vs Links. Multiple associations to model multiple links

between the same objects

Association End names:
• Association End names is an important concept in UML.

• Association ends can not only be assigned multiplicity they can also be named. In

a problem description they are generally identified by nouns

Association end: can give names to the association link.

Use of associations end name: to name links b/w object of same class.

Figure 10: Association End names. Each end of an association can have a name.

CompanyPerson
employee employer

WorksFor

Joe Doe Simplex
Mary Brown
Jean Smith

Simplex
United Widgets

employee employer

* 0..1

aLink
A B

anAssociation
anA:A aB:B

Class diagram Object diagram

anotherAssociation anotherLink

* *

**

aLink
A B

anAssociation
anA:A aB:B

Class diagram Object diagram

anotherAssociation anotherLink

* *

**

 6

Importance of association end names as in figure 11.

Figure 11: association end names are necessary for association between two objects

of same class

Figure 12: Association end names: Use association end names to model multiple

references to the same class

Ordering: association which follows some priority eg. Windows opened on screen

follow on explicit order only top most windows is visible on any part of screen

Ordered collection of elements with duplicates not allowed .ref figure 13

Figure 13 Ordering an object for an association end. Ordering sometimes occurs for

“ many” multiplicity

Bags and sequences:
• Bag: collection of elements with duplicates allowed.

• Sequence: ordered collection of elements with duplicate allowed eg. An itinerary

is a sequence of airports and the same airport can be visited more than once.

• Sequence is ordered bag both allow duplicates, {ordered} and {sequence} is same

only difference is sequence allows duplicates as shown in figure 14.

WIndowScreen
VisibleOn

{ordered}

*1

Correct modelWrong model

Person
parent

child

0..2
Parent Child

2 **

*

1

contents

Directory

container

authorizedUser

owner

User

*

*

*

0..1

 7

Figure 14: An example of a sequence. A itinerary may visit multiple airports so you

should use{ sequence} and not { ordered}

Association Classes:

• It is an association that is also a class.

• Like the links of an association, the instances of an association class derive

identity from instances of the constituent classes.

• You can find association classes by looking for adverbs in a problem statement or

by abstracting values. ref figure 15,16

Figure 15: The links of an association can have attributes.

AirportItinerary
{sequence}

**

accessPermission

File User* *

/etc/termcap
/etc/termcap

read
read-write

John Doe
Mary Brown

/usr/doe/.login read-write John Doe

AccessibleBy

 8

Figure 16: Association classes. Attributes may also occur for one-to-many and one-

to-one associations

Figure 17: Proper use of association class: Do not fold attributes of an association

into a class

Figure 18: An association class participating in an association.

WorksFor

Preferred
form

Discouraged
form

*

*

0..1

0..1

name

Company

address

name

Company

address

Person

name
birthDate
address
salary
jobTitle

Person

name
birthDate
address salary

jobTitle

WorksFor

salary
jobTitle

performanceRating

Manages

boss

worker

*

*

name

Company

address

Person

name
birthDate
address0..1

0..1

WorksFor

User Workstation

Directory
homeDirectory

* *

* 1

Authorization

priority
privileges

startSession

 9

Figure 19: Association class Vs. Ordinary class An association class is much

different from an ordinary class

Qualified Associations:

• An association in which an attribute called the qualifier disambiguates the objects

for a “many” association end.

• Job of qualifier is to reduce the many association to one. Can only work for m-m

and 1-m

• Also facilitates traversal of class models

• Stock exchange gives special unique symbol to each company

• Using qualified association we can make traversal easy.

• Ref Figure 20,21.

Figure 20: Qualified association. Qualification increases the precision of a model.

*
Company

name

Person

name
*

quantity

Association
class

Ordinary
class

*
Company

name

Person

name
*

Purchase

quantity
date
cost

11

OwnsStock

AccountBank accountNumber
0..11

Qualified

Bank
1 *

Account

accountNumber

Not qualified

 10

3.

Figure 21 : Qualified association. Qualification also facilitates traversal of class

models.

3. Generalization and inheritance

• Generalization is the relationship between a class (the super class) and one or

more variations of the class (sub class)

• Super class holds the common attributes, operations and associations. Subclass

adds specific attributes

• Each subclass inherits features of super class Ancestor and descendents

• Refer figure 22.

• Figure 23 shows the inheritance definition for the case study of describing

graphical figures.

StockExchange

Lists

Not qualifiedQualified

Company

StockExchange

Lists

tickerSymbol *

*

*

Company
0..1

tickerSymbol

 11

Figure 22: A multilevel Inheritance hierarchy with instances: Generalization

organizes classes by their similarities and differences, structuring the description of

objects.

T111:FloatingRoofTank

name = “T111”
manufacturer = “Simplex”
weight = 10000 kg
cost = $50000
volume = 400000 liter
pressure = 1.1 atm
diameter = 8 m
height = 9 m

P101:DiaphragmPump

name = “P101”
manufacturer = “Simplex”
weight = 100 kg
cost = $5000
suctionPres = 1.1 atm
dischargePres = 3.3 atm
flowRate = 300 l/hr
diaphragmMatl = Teflon

E302:HeatExchanger

name = “E302”
manufacturer = “Brown”
weight = 5000 kg
cost = $20000
surfaceArea = 300 m 2

tubeDiameter = 2 cm
tubeLength = 6 m
tubePressure = 15 atm
shellPressure = 1.7 atm

Equipment

name
manufacturer
weight
cost

Tank

volume
pressure

HeatExchanger

surfaceArea
tubeDiameter
tubeLength
tubePressure
shellPressure

Pump

suctionPressure
dischargePressure
flowRate

PlungerPump

plungerLength
plungerDiameter
numberOfCylinders

DiaphragmPump

diaphragmMaterial

CentrifugalPump

impellerDiameter
numberOfBlades
axisOfRotation

FloatingRoofTank

diameter
height

PressurizedTank

diameter
height

SphericalTank

diameter

{Note: The listing of equipment,
pumps, and tanks is incomplete.}

 12

Figure 23: Inheritance for graphic figures. Each subclass inherits the attributes,

operations, and associations of its super classes.

Use of Generalization:
• Serves three purposes:

• Support for polymorphism. (call at super class level automatically resolved)

• Second purpose is to structure the description of objects.(a taxonomy is formed)

• Third purpose is to enable reuse of code.

The terms generalization, specialization and inheritance all refer to aspects of the same

idea.

• Generalization: derives from the fact that the superclass generalizes the

subclasses.

• Specialization: refers to the fact that the subclasses refine or specialize the

Superclass.

• Inheritance: is the mechanism for sharing attributes, operations, and associations

via generalization / specialization relationship.

dimensionality

TwoDimensional

orientation

scale

fillType

fill

OneDimensional

orientation

scale

ZeroDimensional

color

Figure

move

centerPosition

penType
penThickness

select
rotate
display

Arc

radius
startAngle

display

arcAngle

Polygon

numOfSides

display

vertices

Circle

diameter

rotate
display

Spline

controlPts

display

Line

endPoints

display

Point

display

Diagram

name

1 *

 13

Overriding Features:
• A subclass may override a super class feature by defining a feature with the same

name.

• We can override methods and default values of attributes.

• Never override the signature, or form, of a feature.

4. A Sample Class Model: figure 24

Figure 24. Class model of a windowing system.

elements

window

choicescurrentChoice

notifyEvent

keyboardEvent

{ordered}

vertices

{subset}

Panel

ChoiceScrolling
Canvas

itemName

*
*

*

*

*

x1

Window

display

y1

y2
x2

undisplay
raise
lower

ScrollingWindow

xOffset

scroll

yOffset
cx1

Canvas

addElement

cy1

cy2
cx2

deleteElement

x

Ellipse

draw

y

b
a

Polygon

draw

Point

x
y

ChoiceEntry

string
value

Event

action

1

0..1

1

1

x1

Line

draw

y1

y2
x2

Shape

color
lineWidth

x

PanelItem

y
label

1

TextItem

maxLength
currentString

Item
Button

string
depressed

Closed

fillColor
fillPattern

Shape
Text

string

insert

Window

delete

1

0..1

1

1

 14

The figure 24 shows a class model of a workstation window management system. This

model is greatly simplified – a real model would require a number of pages- but it

illustrates many class modeling constructs and shows how they fit together.

This simple mode gives a flavor of the use of class modeling.

5. Navigation of class model

Until now we have seen how class model can express the structure of an application.

Now we will in this section see how they can also express the behavior of navigating

among classes. Navigation is important because it lets you express the behavior of

navigating among classes. Navigation is important because it lets you exercise a model

and uncover hidden flaws and omissions so that you can repair them. You can perform

navigation manually (an informal technique) or write navigation expressions.

Consider the simple model for credit card accounts: we can pose a variety of questions

against the model.

• How many credit card account customer has?

• What transaction occurred in a time interval for a customer?

• The UML incorporates a language that can express these kinds of questions- the

Object Constraint Language (OCL)

Figure 24: Class model for managing credit card accounts.

name

Institution

address
phoneNumber

maximumCredit

CreditCardAccount

currentBalance

accountNumber

paymentDueDate

Statement

financeCharge
minimumPayment

statementDate

transactionDate

Transaction

explanation

transactionNumber

AdjustmentFeePurchaseInterestCashAdvance

feeType

Merchant

name

address

MailingAddress

phoneNumber

name

Customer

accountHolder

amount

*1

*

*

*

0..1

1

0..1 1

0..11

1

 15

Object constraint language :

• Used to answer question pertaining to a class model

• Attribute syntax aCreditCardAccount.maximumCredit takes a CreditcardAccount

object and finds the value of maximumCredit

• Operations : The syntax for a collection operation is the source object collection,

followed by by -> and then the operation.

• Simple association: A third use of the dot notation is to traverse an association to

a target end. The target end may be indicated by an association end name or,

where there is no ambiguity, a class name. In the example

aCustomer.MailingaAddress yields a set of addresses for a customer.

• Qualified association. A qualifier lets you make a more precise traversal.

• Association classes: Given a link of an association class, you can find the

constituent objects. Alternatively, given a constituent object, you can find the

multiple links of an association class.

• Generalizations: Traversal of a generalization hierarchy is implicit for thr OCl

notation.

• Filters: There is often a need to filter the objects in a set. The OCL has several

kinds of filters, the most common of which is the select operation.

Examples of OCL Expressions:

What transactions occurred for a credit card account within a time interval ?

aCreditCardAccount.Statement.Transaction-->

select (aStartDate <=transactionDate and

transactiondate <= anEndDate)

The above expression traverses from a CreditCardAccount object to Statement and then

to Transaction, resulting in a set of transactions. (Traversal of the two associations results

in a set, rather then a bag, because both associations are one-to-many.) Then we use the

OCL select operator (a collection operator) to find the transactions within the time

interval bounded by aStartDate and anEndDate.

Summary:

• Object and Class Concepts.

• Link and Association Concepts

• Generalization and Inheritance

• A Sample Class Model

• Navigation of Class Models

 16

The summary of the basic notations of the class model is listed below:

Class1 Class2

Association Class:

attribute

...

operation

...

AssocName

ClassName

Class:

ClassName

attribute
attribute : DataType[attMult]
attribute : DataType[attMult] = defaultValue

operation
operation (arg1:Name1, ...) : ResultType

Association:

Class1
AssociationName

Multiplicity of Associations:

Class Exactly one

Class Many (zero or more)

Class Optional (zero or one)

Class One or more
1..*

Superclass

Subclass1 Subclass2

Generalization (Inheritance):

Class

Ordered, Bag, Sequence:

{ordered}

Class Model Notation — Basic Concepts

Qualified Association:

Class1 Class2qualifier

...

...

assocEndNm2assocEndNm1

Object:

objectName:ClassName

objectName:ClassName

attributeName = value

...

Link:

object1:Class1 object2:Class2
AssociationName

1

0..1

*

*

Class
{bag}

*

Class
{sequence}

*

PackageName

Package: «enumeration»

enumValue1
enumValue2

EnumName

...

Enumeration:

...informal text...

Comment:

 17

Exercise:

1. Prepare an Object diagram for an imaginary round tripe you took last weekend to

London. Include at least one instance of each class. Fortunately, direct flights on a

hyper sonic plane were available. A friend went with you but decided to stay a while

and is still there. Captain Johnson was your pilot on both flights. You had a different

seat each way, but noticed it was on the same plane because of a distinctive dent in the

tail section. Students should indicate unknown values with a “?”.

Answer:

Figure A3.10 shows an object diagram that corresponds to the exercise statement. Note

that most attribute values are left unspecified by the problem statement, yet the object

diagram is still unambiguous. All objects are clearly identified by their attribute values

and links to other objects. The exercise states that “you took a round trip between cities

last weekend”; we make the assumption that this is also a round trip between airports.The

two seats connected by the dotted line may be the same object.

 18

2. Prepare a class diagram for the dinning philosopher problem. There are 5 philosophers

and 5 forks around a circular table. Each philosopher has access to 2 forks, one on

either side. Each fork is shared by 2 philosophers. Each fork may be either on the table

or in use by one philosopher. A philosopher must have 2 forks to eat.

Answer:

Figure A3.34 shows a class diagram for the dining philosopher’s problem. The one-to

one associations describe the relative locations of philosophers and forks. The InUse

association describes who is using forks. Other representations are possible, depending

on your viewpoint. An object diagram may help you better understand this problem

