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Chapter 1
Introduction

This course material on signals and systmes is a part of VA&t program. The course
has been carried out by three faculty from different engingecolleges across the state.
We divided the course into three parts as given:

e Part 1 by Dr.B.Kanmani, BMSCE, Bangalorelore (Coordinator

— Unit I Introduction

— Units Il and IlI: Time domain Analysis (partial)
e Part 2 by Dr.R.Krupa, KLE, Belgaum

— Units IV, V, VI: Fourier representation
e Part 3 by Dr. Uma Mudenagudi, BVBCET, Hubli

— Units Il and IlI: Time domain Analysis (partial)

— Units VII, VIII: Z-domain Analysis

In what follows, | give the summary of the 11 classes carriedrd) 11 April 2009 to
12 May 2009. The text book followed is Signals and Systemsiimo8 Haykin and Barry
Van Veen [2]. The other reference books used for the classdad4, 1, 3, 5]. Each section
describes one class.
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1.1 Class 1: Difference and differential equation

Outline of today’s class

e Brief review

Difference equation

Differential equation

Solution to difference and differential equation

Homogeneous and particular solution

1.1.1 Brief review

e Signals

— classification, operations elementary signals

— Fourier representations of signals and and applications
e Systems

— properties

— time domain representations, convolution, propertiesgdulse
response

Signals and Systems course under VTU-EDUSAT program
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Time domain representation of LTI Systems

e Impulse response: characterizes the behavior of any LTésys

e Linear constant coefficient differential or difference ation: input

output behavior

e Block diagram: as an interconnection of three elementaeyaifpns

1.1.2 Differential and difference equation

e General form of differential equation is

N k M dk
a—Y(t) =) be—X(t) (1.1)
kZO dtk kZo dtk

e General form of difference equation is
M

Y ayin—K =Y bxin—K (1.2)
k=0

e whereay andby are coefficientsx(.) is input andy(.) is output and
order of differential or difference equation(isi, N)
Example of Differential equation

e Consider the RLC circuit as shown in Figure 1.1. k@ be the input
voltage source ang(t) be the output current. Then summing up the

voltage drops around the loop gives

RY(D) + Ly + ¢ [ ymdt=x(

Signals and Systems course under VTU-EDUSAT program
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R L
— AN\N—YY N

x(1) (D @ =C

Figure 1.1: RLC circuit

Difference equation

e A wide variety of discrete-time systems are described bgdirdiffer-
ence equations:

y[n]+2aky[n—k]: %bkx[n—k], n=0,1,2,...
k=0

where the coefficients,,...,ay andby,...,by do not depend on. In
order to be able to compute the system output, we also negetih\g
the initial conditions (ICsy[—1],y[—2]...y[—N]

e Systems of this kind are

— linear time-invariant (LTI): easy to verify by inspection

— causal: the output at time depends only on past outputg —
1],...,y[n—N]and on current and pastinpuis],x[n—1],... ,X[n—
M]

e Systems of this kind are also called Auto Regressive Movingrage
(ARMA) filters. The name comes from considering two specases.

Signals and Systems course under VTU-EDUSAT program
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e auto regressive (AR) filter of ordé, AR(N): bp=...=by =0
N
y[n]+2aky[n—k]:0 n=0,12,...
K=1

In the AR case, the system output at times a linear combination of
N past outputs; need to specify the Igs-1],...,y[—N].

e moving-average (MA) filter of ordeX,AR(N) :ag=...=any=0
M
y[n]:Zbkx[n—k] n=0,12,...
k=0

In the MA case, the system output at timés a linear combination of
the current input ant¥l past inputs; no need to specify ICs.

e An ARMA(N, M) filter is a combination of both.

e Let us first rearrange the system equation:

N M
yinl=— % ayh—K+ 5 bxn—K n=0,1,2,...
K=1 K=0
e atn=20
N M
yo =— 5 ay[-K+ > bix[—K]
k=1 k=0
N ~ ———
depends on ICs  depends on input x[0] —x[—M]
e atn=1
N M
y[a] =% ay[l-K+ > bx[1-K
K=1 K=0

Signals and Systems course under VTU-EDUSAT program
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After rearranging

N—1 M
y[1] = —ay[0] - 5 acray[-K + > bix(1—K]
k=1 k=0

A o~ o~

depmdzon ICs depends on inE)atx[l]...x[l—M]

e atn=2 "
V2= 5 agi2—K+ 3 2K
After rearranging
N—1

M
y[2] = —aqy[1] —apy[0] — kz a1y —K|+ kX biX[1— K]
=1 =0

A\ 7 \ . e

depmdgon ICs depends on inaat X[2]...X[2—M]
Implementation complexity

e In general, to compute the output of ARMA(N, M) filter at timen,
we need the outputs at times-1,n—2,...,n— N and the inputs at
timesn,n—1,....n—M

e memory: at any time, need to stakeoutput values anil + 1 input
values, for a total oN + M + 1 values

e operations: at any time, wee needN + M additions andN + M + 1
multiplications, for a total of &N + M) + 1 operations to computgn]

e Computational complexity is proportional to=N + M and is inde-
pendent oh

Example of Differential equation

Signals and Systems course under VTU-EDUSAT program
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e For a series RLC circuit with voltage sourgé) and output current
around the loopy(t) is

RO+ Loy + 5 [ ymdr=x)

¢ Differentiating witht gives

2
Y FRIYO + Loy = Sx()

e This is second order differential equation indicating twermgy storage
devices (cap and inductor)

Example of Difference equation

e An example of Il order difference equation is

}y[n — 2] =x[n]+2x[n—1]

yin+yln-1+4

e Memory in discrete system is analogous to energy storagentinu-
ous system

e Number of initial conditions required to determine outmegual to
maximum memory of the system

Initial conditions

e Initial conditions summarize all the information about Hystems past
that is needed to determine the future outputs

Signals and Systems course under VTU-EDUSAT program
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e In discrete case, for aN'" order system th#l initial value are
Y[=NJ,y[=N+1],....y[-]]

e The initial conditions foN'"-order differential equation are the values
of the firstN derivatives of the output

d d2 dN—l
y(t)|t=o, aya) lt=0, WV(U lt=0,-- - Wy(t) lt=0

Solving difference equation

e Consider an example of difference equatygm +ay[n—1] =x[n], n=
0,1,2... with y[—1] =0 Then

y[0] = —ay[-1]+x[0]
y[1] = —ay[0]+x[1]
= —a(—ay[—1]+x[0]) + x[1]
= a%y[-1] —ax(0]) + (1]
y[2 = —ay[1]+x2]
= —a(—a%y[-1] —ax[0] +x[1]) +x[2)
= a’y[—1] +a’x[0] — ax[1] + x[2]

and so on

e We gety[n| as a sum of two terms:
yn = (—a)" -1+ 5" o(—a)" X[}, n=0,1,2,...

e First term(—a)"*1y[—1] depends on IC’s but not on input

Signals and Systems course under VTU-EDUSAT program
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e Second terny " o(—a)"~'x[i] depends only on the input, but not on the
IC’s

e This is true for any ARMA (auto regressive moving averageygesm:
the system output at timeis a sum of the AR-only and the MA-only
outputs at timen.

e Consideran ARMA (N,M) systeryn] = — SN aiy[n—i]+ M bix[n—
i], n=0,1,2,... with the initial conditions/[—1],...,y[—N].
e Output at timeniis:
YN[ = Yn[n+yp(n]

whereyp[n] andyp[n] are homogeneous and particular solutions
e First term depends on IC’s but not on input
e Second term depends only on the input, but not on the IC’s

e Note thatyy[n] is the output of the system determined by the ICs only
(setting the input to zero), whilg,[n] is the output of the system de-
termined by the input only (setting the ICs to zero).

e yy[n| is often called the zero-input response (ZIR) usually refdias
homogeneous solution of the filter (referring to the fact this deter-
mined by the ICs only)

e yp[n] is called the zero-state response (ZSR) usually referreddis-
ular solution of the filter (referring to the fact that it istdamined by
the input only, with the ICs set to zero).

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 10

[s]
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0 5 10 15 20 25 30 35 40 45 50

Step response” of a system
Figure 1.2: Step response
e Consider the output decompositigfn] = yn[n| + yp[n] of an ARMA
(N, M) filter

y[n = — _iajy[n —i]+ _I\ibix[n —i], n=0,12,...

with the ICsy[—1],...,y[—N].

e The output of an ARMA filter at time is the sum of the ZIR and the
ZSR at timen.

Example of difference equation

e example: A system is described ¥y — 1.143y[n— 1] + 0.4128/[n—
2] = 0.0675(n] + 0.134K[n — 1] + 0.675[n— 2]

e Rewrite the equation agn| = 1.143y[n— 1] —0.4128/[n— 2]+ 0.067[n| +
0.134X[n— 1]+ 0.675x[n— 2]

Signals and Systems course under VTU-EDUSAT program
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2l | ,
0 5 10 15 20 25 30 35 40) 45 50

Output due to initial condition with zero input

Figure 1.3: Initial condition

] r

wﬁwmwmwmmmwﬁ

0 10 20 30 40 50 60 70 80 90 100

Output due to x[n]

Figure 1.4: Due to input[n] = cog15Tm)

NEEEEEREEY
ISR REAS

o s}
%0 90 100

U

Output due to x[n]

Figure 1.5: Due to inpwt|n| = cos(%nn)

Signals and Systems course under VTU-EDUSAT program
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0 10 20 30 40 50 60 70 80 90 100

Output ditije to x[n]
Figure 1.6: Due to input[n] = cos( {5Tm)
Solving differential equation
e We will switch to continuous-time systems. A wide varietycohtinuous-

time systems are described the linear differential eqoatio

gk
Z akdtky Z bkdtk (1.3)

e Just as before, in order to solve the equationyf@y, we need the
ICs. In this case, the ICs are given by specifying the valug afd
its derivatives 1 througiN — 1 att = O~ (time "just before’t = 0):
y(07),y B (07),...,yIN-D(07). whereyl) (t) denotes th@" derivative
of y(t), andy @ (t) = y(t).

e Note: the ICs are given &at= 0~ to allow for impulses and other dis-
continuities at = 0.

e Systems described in this way are

e linear time-invariant (LTI): easy to verify by inspection

Signals and Systems course under VTU-EDUSAT program
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e causal: the value of the output at time t depends only on tiuband
theinputattimes X 1<t

e Asin the case of discrete-time system, the solugi@hcan be decom-

posed intoy(t) = yn(t) +yp(t)
where homogeneous solution or zero-input response (¥}R), satis-
fies the equation

N—-1 .
Vi (t) + Z) ay (1)=0, >0
1=

with the ICsy (07), ...,

e The zero-state response (ZSR) or particular solutyth) satisfies the
equation

() + Ng aiyy (t) = ibix“”—‘)(t), t>0

with ICsyp(07) = yg)l) (07)=..= yg)N_l)(O_) =0.
Homogeneous solution (ZIR) for CT

e A standard method for obtaining the homogeneous solutigaI&) is
by setting all terms involving the input to zero.

N
(i)
ajyy, (1) =0, t>0
i;) "

Signals and Systems course under VTU-EDUSAT program
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and homogeneous solution is of the form

N
Yh(t) = .;Cierit

wherer; are theN roots of the system’s characteristic equation

andCg,...,Cy are solved using ICs.
Homogeneous solution (ZIR) for DT

e The solution of the homogeneous equation
N
> ayn[n—kK =0
K=0

N

Yn[n] = _;Cirin

wherer; are theN roots of the system’s characteristic equation

andCg,...,Cy are solved using ICs.
Example 1 (ZIR)

e Solution of

2
%y(t) + S%y(t) +6y(t) = 2x(t) + %X(t)

Signals and Systems course under VTU-EDUSAT program
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yn(t) = cre 3 + e 2

e Solution ofy[n] —9/16y[n— 2] = x[n— 1] isyn[n] = ¢1(3/4)"+cp(—3/4)"
Example 2 (ZIR)

e Consider the first order recursive system described by tereince
equationy[n] — py[n — 1] = x[n|, find the homogeneous solution.

e The homogeneous equation (by setting input to zerg)nis— py[n —
1] =0.

e The homogeneous solution fr= 1 is yy[n] = c1r7.

e r1is obtained from the characteristics equatipr p =0, hence,=p
e The homogeneous solutionyign] = c1p"

Example 3 (ZIR)

e Consider the RC circuit described Bt) + RC3y(t) = x(t)

e The homogeneous equationyis) + RCSy(t) = 0

e Then the homogeneous solution is
Yn(t) = cr™t

wherer is the root of characteristic equation+IRCr; =0

o This givesr; = — g

Signals and Systems course under VTU-EDUSAT program
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e The homogeneous solution is

—t

Yh(t) = crere

Particular solution (ZSR)

e Particular solution or ZSR represents solution of the difféial or dif-
ference equation for the given input.

e To obtain the particular solution or ZSR, one would have te the
method of integrating factors.

e Yp is not unique.

e Usually it is obtained by assuming an output of the same @éfem
as the input.

e If X[n] = ap then assumgp[n] = ca” and find the constant so that
yp[n] is the solution of given equation

1.1.3 Examples

Example 1 (ZSR)

e Consider the first order recursive system described by tifiereince
equatiory[n] — py[n— 1] = x[n|, find the particular solution whetjin] =
(1/2)".

e Assume a particular solution of the foryp[n] = cp(1/2)".

e Put the values ofp[n] andx[n] in the equation then we gep(3)" —
pep(3)" = (3)"

Signals and Systems course under VTU-EDUSAT program
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e Multiply both the sides of the equation l§§/2)" we getcp =1/(1—
2p).
e Then the particular solution is
1 1,
Yp[n] = 1_—2‘)(5)

e For p = (1/2) particular solution has the same form as the homoge-
neous solution

e However no coefficienty satisfies this condition and we must assume
a particular solution of the formy,[n] = cpn(1/2)".

e Substituting this in the difference equation giwga(1—2p) + 2pcp =
1

e Usingp = (1/2) we find thatc, = 1.
Example 2 (ZSR)
e Consider the RC circuit described ft) + RCy(t) = x(t)

e Assume a particular solution of the forp(t) = ¢, cogwot) + C2 sin(wt).

e Replacingy(t) by yp(t) andx(t) by cogwot) gives
1 cog ot ) + €2 Sin(wot ) — RCwpcy Sin(wpt ) + RCwpCz2 cog ot ) = co wpt)

e The coefficient; andc, are obtained by separately equating the co-
efficients of coswot) and sirfwot ), gives

= L and Co = RCwo
" 1+ (RCux)? ?7 1+ (RCwp)?

C1
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e Then the particular solution is

sin(wot)

Yolt) = = cos{wf) +

Wo
1+ (RCu) 1+ (RCux)?

Complete solution

e Find the form of the homogeneous solutipnfrom the roots of the
characteristic equation

e Find a particular solutiogp by assuming that it is of the same form as
the input, yet is independent of all terms in the homogensoligion

e Determine the coefficients in the homogeneous solution abttie
complete solutioly = y, + Yy, satisfies the initial conditions

1.1.4 Unsolved example from [2]

Unsolved ex. 2.53
Determine the homogeneous solution of the system desdoypdte differ-

ential equation

o (a) 5gY(t) +10y(t) = 2x(t)
Solution is
5r+10=0
r=-2
Yh(t) = cre2

o (0) Ly(t) +63y(t) +8y(t)
Solution is

s
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r24+6r+8=0
r=—4,—2 andyn(t) = cie* + cre 2

Unsolved ex. 2.53
Determine the homogeneous solution of the system desdoypdte differ-
ential equation

o (€) Soy(t)+4y(t) = 3§x(t)
Solution is
r’+4=0
r=42]
Yh(t) = cre 2" + cpe?lt

o (d) Soy(t) +28y(t) +2y(t) = (1)
Solution is
r24+2r+2=0
r=—1+]
yh(t) = crel 1t 4 cpel=1-90t

o (&) Ty(t) +25y(t) +y(t) = Ix(t)
Solution is
r°+2r+1=0
r=+1
Yh(t) = cre t +coté
Unsolved ex. 2.54

Determine the homogeneous solution of the system desdopdte differ-
ence equation
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e (a)y[n] —ay[n—1] = 2x[n]
Solution is
r-a=0
Yn[n] = ca"
o (b)y[n] —(1/4)y[n—1] - (1/8)y[n—2] = x[n] +x[n— 1]
Solution is
r>—(1/4)r—(1/8) =0
r = (1/2),(1/4) andyn[n] = c1(3)"+c2(3)"
Unsolved ex. 2.54

Determine the homogeneous solution of the system desdoypdte differ-
ence equation

e (c)y[n—(9/16)y[n—2] = x[n—1]
Solution is
r>+9/16=0
r=+j3
yhln] = ca(j§)"+ca(—j3)"
e (d)y[n]+yln—1] - (1/4)yln—2] = x[n] + 2x[n — 1]
Solution is
r’+r+1/4=0
r = —3,—3 andyn[n] = c1(—3)" + can(
Unsolved ex. 2.55
Determine the particular solution of the system describeithb differential

Nl

)n
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equation

2

o () 5%y(t)+10y(t) = 2x(t) and (i)x(t)
Solution is
Yp(t) =k
10k=2%2
k=2/5
Yp(t) =2/5

o (a) 53y(t) +10y(t) = 2x(t) and (i) x(t) = e
Solution is
Yp(t) = ke™
—5ke '+ 10ke t = 2e7t
k=2/5
yp(t) = 2/5e”"

Unsolved ex. 2.55
Determine the particular solution of the system describetthe differential

equation

o (@) 53y(t) + 10y(t) = 2x(t) and (iii) x(t) = cog3t)
Solution is
yp(t) = Acogq3t) + Bsin(3t)
dyp(t) = —3Asin(3t) + 3Bcos(3t)
5(—3Asin(3t) +3Bcog3t)) + 10Acog3t) + 10Bsin(3t) = 2cog 3t)
—15A+10B=0
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10A+15B =2

A=4/65

B=6/65

yp(t) = (4/65)cog3t) + (6/65) sin(3t)

o (b) Ly (t) +4y(t) = 39x(t) and ()x(t) =t
Solution is
Yp(t) = kat + ko
Akgt + 4ky, = 3
ki =0 andky, = 3/4
Yp(t) =3/4

Unsolved ex. 2.56
Determine the particular solution of the system describethb difference

equation

e (@)y[n] - (2/5)yln— 1] = 2x[n] and ()x[n] = 2u[n|
Solution is
Yp[n] = ku[n]
k= (2/5)k=4andk=20/3
Yp[n] = (20/3)u[n|

e (@)yln] - (2/5)yln— 1] = 2x[n] and (i) x[n| = —(1/2)"u[n]
Solution is
Yp[n| = k(1/2)"u[n]
k(1/2)"—(2/5)(1/2)"k = —2(1/2)" andk = —10
Yp[n] = —10(1/2)"u[n|
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Unsolved ex. 2.57
Determine the output of the systems described by the fatigwlifferential
equations with input and initial conditions as specified:

e () $y(t) +10y(t) = 2x(t), y(0~) = 1,x(t) = u(t)
Solution is
t > 0 natural: characteristic equation
r+10=0andr =-10
Yn(t) = ce 1%
Particular solutionyp(t) = ku(t) = (1/5)u(t)
y(t) = (1/5) +ce
y(07) =1=(1/5)+c,c=(4/5)
ki =0 andky, = 3/4
y(t) = (1/5)(1+4eM)u(t)

Unsolved ex. 2.57
Determine the output of the systems described by the fatigwdifference
equations with input and initial conditions as specified:

e (@)y[n] — (1/2)yin— 1] = 2x{n], y[~1] = 3,X|n] = (~1/2)"u[n]
Solution is
Homogeneous solutiom > 0,r — (1/2) = 0, yp[n] = ¢(1/2)"
Particular solutionyp[n] = k—1/2)"u[n]
k(—1/2)"— (1/2)k(-1/2)"1=2(—1/2)" andk = 1
Ypln] = (~1/2)"u[n
Initial conditions:y[n] = (1/2)y[n— 1] + 2x|n]
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y[0] = (1/2)(3) +2=7/2
Total solution:y[n] = (—1/2)"u[n] 4+ c(1/2)"u[n]
7/2=1+candc=5/2

yln] = (=1/2)"un[+(5/2)(1/2)"u[n]

Example 1

e Find the solution of the first order recursive system describy the
difference equatiog[n] — (1/4)y[n— 1] = x[n] if x[n] = (1/2)"u[n] and
the initial condition isy[—1] = 8.

e y[n| = yn[Nn] +Yp[n] (same example witp = 1/4)
o YN =2(3)"+c1(3)", for n>0)

e Coefficientc; is obtained from the initial conditions. First translate th
initial condition to timen = 0 by rewriting equation in recursive form
and putn = 0, which gives

e y[0] = x[0] + (1/4)y[—1], which implies thay[0] = 1+ (1/4) *8 =3,
putting y[0] = 3 in they[n] equation gives 3= 2(3)° + c¢1(3)°, which
givesc; =1

e The complete solution ign] == 2(3)"+ ¢, ()" for n>0,
Example 2

e Find the response of the RC circuit described/{y+ RC%y(t) =X(t),
to an inputx(t) = cogt)u(t). AssumeR = 1Q andC = 1F and initial
voltage across the capacitoryi® ) = 2V
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e The homogeneous solutionyig(t) = ce R

e The particular solution is (witkhy = 1)

yp(t) = ﬁcosﬂ) + %sin(t)

e The complete solution is (assume with = 1, R=1 andC = 1F)

y(t) =ce '+ % cogt) + %sin(t) t>0

Conclusions
¢ Difference equation and differential equation
e Solution to difference equation and differential equation

e Homogeneous solution (ZIR) is due to initial conditionsiof system
and does not depend on the input

e Particular solution (ZSR) is due to input when initial caiwhs of the
system are set to zero

e Total solution is a combination of homogeneous solutiorRjZand
particular solution (ZSR)
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1.2 Class 2: System representations

Outline of today’s class

e Characteristics of a system described by difference aferdiitial sys-
tem

e Block diagram representations
e Block diagram implementation of given systems represeinyatiffer-
ence and differential equations
1.2.1 Characteristics
¢ Differential/difference equation consists of two terms

1. Associated with the initial conditions: natural respmns

2. Associated with only the input signal: forced response

e The complete output isf = yn+ Vi

Natural response
e This is the system response when the input is zero
e Deals with

1. dissipation of any stored energy
2. memory of the past represented by the past inputs
e Since input is zero, the response can be obtained by homoggse-

lution by choosing the coefficients so that the initial cdimhs are
satisfied
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e The natural response is determined without translatingaircondi-
tions forward in time

Ex 1: Natural response

e Consider the RC circuit described pit) + RC%y(t) = X(t), find the
natural response of this system assumyif) =2 V,R=1Q andC =
1F.

e The homogeneous solutionyig(t) = cle%t =cetVv

e The natural response is obtained by choosingo that the initial con-
dition y(0) = 2 is satisfied.

e The initial condition implies that; = 2
e Hence, the natural responsegigt) =2e ' V for t >0
Ex 2: Natural response

e Consider the first order recursive system described by tifiereince
equatiory[n] — %y[n — 1] =x[n|, find the natural response with 1] =
8.

e The homogeneous solution fiir= 1 isyx[n] = c1(7)".
e Satisfaction of the IG[—1] = 8 gives 8= c1(3) 2, which givesc; = 2
e Hence the natural responseyign] = 2(3)", n> -1

Unsolved ex. 2.58(a)
Identify the natural response for the systefy(t) +10y(t) = 2x(t), y(0~) =
1,X(t) = u(t)
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e r+10=0andr=-10
yn(t) = cre™ 1
y0 )=1=c1
Yn(t) = e 19

Unsolved ex. 2.58(c)
Identify the natural response for the systelging'y(t) + 6%y(t) + 8y(t) =

2(t), Y(0°) = 1, $y(t)l—o- = LX(t) = etu(t)

o Yn(t) = cre~*u(t) + coe~2u(t)
y(07) = —1=ci+cand dy(t)—o- = 1= —4c; — 2,
andc; = 3,6, = —3

_ 14t 3,2
Yn(t) = 56" —Je
Forced response
e System response due to input signal assuming zero ICs

e Forced response is similar to complete solution with zersy (@ sys-
tem isat rest and (ii) no stored energy or memory

e Since the ICs are zero, the response is forced by the inpglsighen
the system is at rest

e The forced response depend on particular solution, whigalid only
for timest >0andn>0

e This means, that rest conditions for discrete time systeyi-N| =
0,..., must be translated forward to timaes= 0,1,2... to solve the
undetermined coefficients.
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Ex 1: Forced response

e Consider the first order recursive system described by tifiereince
equationy[n] — zy[n — 1] = x[n], find the forced response ¥n] =

(3)"u[n].
e The complete solution is of the forgin] = 2(3)"+c¢1(3)", n>0.

e The forced response is obtained by choosingo that the initial con-
ditiony(—1) = 0 is satisfied.

e The initial condition implies thay(0) = x[0] + zy[—n], y[0] = 1, and
ci=-1

e Hence, the forced responseyign] = 2(3)"— ()", n>0

Ex 2: Forced response
Identify the forced response for the systelﬁ@dty( )+y(t) =x(t), R=1,
C=1,x(t) = costu(t)

o yi(t) =ce '+ 1cost+3sint, t>0y(0")=y(0")=0andc=—3
yi(t) = —3e7t + Scodt + 3 sint
1.2.2 Unsolved examples from [2]

Unsolved ex. 2.58(a)
Identify the forced response for the systefiy(t) +10y(t) = 2x(t), y(0~) =
1,x(t) = u(t)
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andk = —

yi(t) = g —ze 19

Unsolved ex. 2.58(c)
Identify the forced response for the systelfry )+ 6th( )+ 8y(t) =

2x(t), y(07) = =1, GY(t)l=o- = L.x(t) = e 'u(t)

o yi(t) = Zetu(t) + cre~*u(t) + coe~2u(t) y(0) = 0= 2 +c1 +cp and
Sty()lt o =1=2—4c;—2c;andc; = 3, co = — 1y (t) = Zetu(t) +

se%u(t) —e 2u(t)

Unsolved ex. 2.60(a)
Identify the forced response for the systeyjm] — 3y[n—1] = 2x[n],y[-1] =
3,x[n] = (—3)"uln]

o yi[n =K(3)"+ (—3)", Translate ICs
y[n] = 3y[n— 1] +2x[n] y[0] = (3)(0) + 2 = 2=k+1 andk = 1 y¢[n]
B
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Impulse response

e Solution to differential/difference equation can be usefirtd the im-

pulse response

e The response to a systeahrest is equivalent to step response of the
system with zero ICs

The impulse and step response are related(by= %S(t) andh[n| =

sin] — sin— 1], whereh(.) is the impulse response as() is the step
response

Impulse response in obtained by differentiating/diffeiag the step
response

No initial conditions for impulse response description

Differential/difference equation representation is mitegible

Linearity and time invariance (TI)

e The forced response of an LTI system described by diffeaédiiference
equation is linear with respect to inputs

Linear: Homogeneity and super position

If X1 — y{ andxy, — yé thena1X1 + oXo — aly{ + azyé

Forced response is also causal: since the system is yiiatest

Similarly, the natural response is linear:yif andy; are two natural
responses associated with ligandl, thenal1+azlo — gy +aoy)
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¢ In general the response of an LTI system described by difterilifferential
equation is not time invariant, since the ICs will result mautput that
does not shift with a time shift of the input

Roots of the characteristic eqn

e The forced response depends on both the input and the roote of
characteristic equation. It involves both homogeneousparticular
solution.

e Basic form of the natural response is dependent entirelp@ndots of
the characteristic equation.

e Impulse response of an LTI system also depends on the roctsaot
acteristic equation.

e Characteristic equation has considerable informatiomedygstem be-
havior

e Stability of an LTI system are directly related to the roo@Butput
bounded for any set of ICs with zero input

e Bl BO stability: each term of the natural response of systemstrbe
bounded

e LTI system is stable

— Discrete caselr'| < 1,Vi
— Continuous casdg'| bounded, ieRe{r;} < 0,

— System is on the verge of instability:|ifi| = 1 orif Re{r;} =0
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e LTI system is unstable

— If any root of the characteristic equation has magnitudeentioain
unity in discrete case

— If the real part of any root of the characteristic equatiooasitive.
e The roots of characteristic egn acts as indicators of thiesybehavior

e Stability condition states that natural response of an lyBkem goes
to zero as time approaches to infinity, since each term isytlega

e When natural response tends to zero then the system resglonslel
be zero for zero input when all the stored energy is dissipate

e Reinforces the LTI system behavior for zero input
e Response is also determined by the roots of the charaatetgiation

e The characteristic equation is very important in both redtand forced
response

e Once the natural response has decayed to zero, the systemidyah
governed by the particular solution (input)

e The natural response describes the transient behavioreddystem,
used to find the time taken by the system to respond to a transse
time it takes for natural response to decay to zero

e The natural response contairfsfor discrete and't for continuous
time systems
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e Response time depends on: (i) root of the characteristiatequwith
the largest magnitude in discrete case and (ii) root witbdar real
component in continuous case

1.2.3 Block diagram representations

e A block diagram is an interconnection of elementary operatithat
act on the input signal

e This method is more detailed representation of the systamithpulse
response or differential/difference equation repredmms

e The impulse response and differential/difference equat&scriptions
represent only the input-output behavior of a system, blliekram
representation describes how the operations are ordered

e Each block diagram representation describes a differdmf seternal
computations used to determine the system output

e Block diagram consists of three elementary operations esitnals:

— Scalar multiplication:y(t) = cx(t) or y[n] = x[n|, wherec is a
scalar

— Addition: y(t) = x(t) +w(t) or y[n] = x[n] +w[n].
e Block diagram consists of three elementary operations esitnals:

— Integration for continuous time LTI system(t) = [*_ x(1)dt
Time shift for discrete time LTI systeny]n] = x[n— 1]

e Scalar multiplicationy(t) = cx(t) or y[n] = x[n|, wherec is a scalar
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x(1) ¢ yir)=cx(1)

I
x[n] yin] =cx[n]

Scalar Multiplication

Figure 1.7: Scalar Multiplication

x(1) vit) = x(r) + wit)
— N — .
x|n] vin] = x[n] + win]
Wil
wln i
) Addition

Figure 1.8: Addition
e Addition: y(t) = x(t) +w(t) ory[n] = x[n] + w[n]

e Integration for continuous time LTI system(t) = [*_ x(1)dt
Time shift for discrete time LTI systenyin] = x[n— 1]
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I
X(f) ——d f — V(1) = J x(t)dt

-—

x[n] — 8§ — v[n]l=x[n-1]

Integration and timeshifting
Figure 1.9: Integration and time shifting

w(n]

| |
|
x[n] ! i I — > 9 yln]
: l A : A
|
I S | S
| |
: h] : _ﬂ[
| xn-1]¢—>—3 F | b yin—=1]
I ¥ 3 l A
: $ } S
| |
| bj l —-1‘.12 I
: x[n - 2] > : ¢ v[n -2)

Figure 1.10: Example 1: Direct form |
1.2.4 Examples
Example 1
e Consider the system described by the block diagram as iné-igd0
e Consider the part within the dashed box

e The inputx[n] is time shifted by 1 to get\n— 1] and again time shifted
by one to ge[n— 2]. The scalar multiplications are carried out and
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x[n] ) z y[n]

nn — U
> M
|
—_ B[ —
»n - [P0

(a)

Figure 1.11: Example 2: Direct form |

they are added to get/n| and is given by
wn| = box[n] 4+ byx[n — 1] 4 box[n — 2].

e Write y[n] in terms ofw|[n| as inputy[n| = w|[n| —ay[n— 1] —agxy[n— 2]

e Putthe value oWv[n] and we gey[n| = —a1y[n— 1] —apy[n— 2] + box|n|
+ bix[n— 1] + box[n— 2]
andy[n]+ayy[n—1]+axyn—2] = box[Nn] 4 b1x[n— 1] 4 bpx[n— 2]
e The block diagram represents an LTI system

Example 2

e Consider the system described by the block diagram andfies@ice
equation isy[n] + (1/2)y[n— 1] — (1/3)y[n— 3] = x[n] 4+ 2x[n — 2]

Example 3

e Consider the system described by the block diagram andfies@ince
equation isy[n] + (1/2)y[n— 1] 4+ (1/4)y[n— 2] = x[n— 1]
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x[n] —e— § = l > y[n]
1 '3
2
_1 IS
4 ]

Figure 1.12: Example 3: Direct form |
Example 1 contd..

e Block diagram representation is not unique, direct formrlicture of
Example 1

e We can change the order without changing the input outpua\wieh
Let the output of a new system lién] and given inpuk|n| are related

by
fn]=—ai1f[n—1] —axf[n—2] +x[n|

e The signalf[n] acts as an input to the second system and output of
second system is

y[n] = bof[n]+ b1 f[n—1] +baf[n—2].
e The block diagram representation of an LTI system is notumiq

1.2.5 Unsolved examples from [2]
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-1

vy ——— n 9
<
o4

—ay l b,
© fln-21

Figure 1.13: Example 1: Direct form I

Unsolved example 2.65(a)

¢ Find the difference equation for the system

e fIn]= —2y[n]+x(n},y[n] = f[n—1] +2f[n] y[n|] = —2y[n— 1] +x[n -
1] — 4y[n| + 2x[n] 5y[n]| + 2y[n — 1] = x[n — 1] + 2X]n|

Unsolved example 2.65(b)

¢ Find the difference equation for the system

o f =y +xin-1,  yin=fln—1=yn—1+xn—2]
Unsolved example 2.65(c)

e Find the difference equation for the system

o fIn]=xn[—(1/8)y[n],y[n| =x[n—1]+ f[n—2] y|n|+(1/8)y[n—2] =
X[n—1] +x[n—2]

Example 1: Direct form |
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Figure 1.14: Unsolved example 2.65(a)

x[n] X[T[}:l]f,_:—l-\ f [n] —f Ln;l] é{:_[n]

= S S

\T |

Figure 1.15: Unsolved example 2.65(b)

|
X[l fn] /| yln]
YA L S )

N |

1
8

Figure 1.16: Unsolved example 2.65(c)

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 41

Y —

«[n] - " >~ y[n]

Y

— L ——
Y —
e i
| ===
|
|-
Lo

Direct form | structure

Figure 1.17: Example 1: Direct form |

e Draw the direct form | of the systegin] + (1/4)y[n— 1] + (1/8)y[n—
2] =x[n] +x[n— 1]

Example 1: Direct form Il

e Draw the direct form Il of the systegin|+ (1/4)y[n— 1]+ (1/8)y[n—
2] =x[n] +x[n—1]

Unsolved ex.2.66(b): Direct form |

e Draw the direct form | if the systeryin] + (1/2)y[n—1] — (1/8)y[n—
2] =x[n] +2x[n—1]

Unsolved ex.2.66(b): Direct form Il

e Draw the direct form Il of the systegin|+ (1/2)y[n—1] — (1/8)y[n—
2] = x[n] +2x[n—1]

Unsolved ex.2.66(c): Direct form |

e Draw the direct form | of the systegin] + (1/2)y[n— 1] — (1/8)y[n—
2] =x[n] 4+ 2x[n—1]
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> y[n]

¢
[
Y
¥

1
4

¥ -

L e
¥ —
I

1
8
L

Drect form Il structure

Figure 1.18: Example 1: Direct form Il

Wy =

\& \& -
S I:’;i:;l -\2

[#a]

i) oo‘n—x

Figure 1.19: Unsolved example 2.66(b), direct form |
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x[n] /N  yIn]
\&J -1 [ \&/
2 2
f'fT v =
N

] S

Figure 1.20: Unsolved example 2.66(b), direct form Il

- | y[n]p__

x[n]

Figure 1.21: Unsolved example 2.66(c), direct form |
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X[n]

I

Figure 1.22: Unsolved example 2.66(c), direct form Il

Unsolved ex.2.66(c): Direct form Il

e Draw the direct form Il of the systegin|+ (1/2)y[n—1] — (1/8)y[n—
2] = x[n] +2x[n—1]

Unsolved ex.2.66(d): Direct form |

e Draw the direct form | of the systegin] + (1/2)y[n— 1] — (1/8)y[n—
2] =x[n] +2x[n—1]

Unsolved ex.2.66(d): Direct form Il

e Draw the direct form Il of the systegin| +(1/2)y[n—1] — (1/8)y[n—
2] =x[n] +2x[n—1]
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x[n]
S
3 /N N y[n]
= \L/ Y TL
S ‘ -1 >
|/‘_‘\__\I 2
\Z/
S
S
L]

Figure 1.23: Unsolved example 2.66(d), direct form |

X[n]
" '\% J
-1 _S
SN 2 3 /) yln]

Figure 1.24: Unsolved example 2.66(d), direct form Il
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Continuous time

e Rewrite the differential equation

N dk ( ) M o dk ( )
kT y(t) = ke X(t
kZO dt* kZO dt*

as an integral equation. Let%(t) = v(t) be an arbitrary signal, and
set t
v(”)(t):/ vi-Dmydt, n=1,23,...

wherev(" (1) is then-fold integral ofv(t) with respect to time

e Rewrite in terms of an initial condition on the integrator as

t
v () = /0 VD@t +vV(0), n=1,2,3,...

e If we assume zero ICs, then differentiation and integraimminverse
operations, ie.

d

av<”>(t) =v(™ V), t>0 andn=1,2,3,...

e Thus, ifN > M and integratéN times, we get the integral description
of the system

S k=0Nay™ () = 5 k= 0" K1)

e For second order system witlyg = 1, the differential equation can be
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x(r) - > 3 > 3 yir)
I A A I
b —a,
) » - 3 5 - ‘ v\
A A
_ by — _
;'1'125““] | :] __._.\” ,'\-"C:"‘U)
Direct form | structure
Figure 1.25: Direct form |
written as

y(t) = —agy!V(t) — aoy'? (t) + box(t) + arx (t) + box 2 (t)

continuous time Direct form |  continuous time Direct form Il
Unsolved ex.2.67(b): Direct form |
e Draw the direct form | of the systelgry +5dty( ) +4y(t) = Fx(t)

Unsolved ex.2.67(b): Direct form Il

e Draw the direct form Il of the syster?ry +5dty( )+4y(t) = dgx(t)

Unsolved ex.2.67(c): Direct form |

e Draw the direct form | of the systergfgy(t) +y(t) = 3%x(t)
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()

I

J
— lf”*{r

J

b,
X(1) —= ¥ 4

= ¥ — (!

= [ —

-
A
—dy l bq
£ :
)
Direct form Il structure
Figure 1.26: Direct form Il
x(t) N y ()
E — ) :
N T/
/ N -
(W O S
‘ "/ |
[ r

Figure 1.27: Unsolved example 2.67(b), direct form |
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x (1) ~ y(®
B — ) | =
g\.-_._ _;/J
3
== i
-1
o

Figure 1.29: Unsolved example 2.67(c), direct form |
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J

-1

Figure 1.30: Unsolved example 2.67(c), direct form Il

Unsolved ex.2.67(c): Direct form Il
e Draw the direct form Il of the systerﬁ%y(t) +y(t) = 3%X(t)

Extra problems: Natural response

o y(0) =3, &y(®)l—o= —7: Ly(t) + 5&y(t) +6y(t) = 2x(t) + Sx(t)

o y(0) =0, dy(t)[r—o = —1: Ly(t) +3%y(t) +2y(t) = x(t) + Ix(t)
o y-1]=3,y[-2] =L y[n — (Fyn— 2] =x[n— 1]

e y[0] = 2,y[1] = 0: y[n] + zy[n— 2] = X[n] +2x[n - 2|
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Conclusions

e Characteristics of a system described by difference aferdiitial sys-
tem: responses, roots of characteristic equation andritgesand time

invariance
e Block diagram representations of systems

e Block diagram implementation of given systems represelyetiffer-

ence and differential equations
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1.3 Class 3:z-Transform

Outline of today’s class

e Introduction toz-transform
e Thez-plane

e Theztransform

e Convergence

e Poles and zeros

1.3.1 Introduction to z-transform

The ztransform is a transform for sequences. Just like the Icapleans-
form takes a function of and replaces it with another function of an aux-
iliary variables. The z-transform takes a sequence and replaces it with a
function of an auxiliary variablez. The reason for doing this is that it
makes difference equations easier to solve, again, thexyslike what hap-
pens with the Laplace transform, where taking the Laplasoesform makes

it easier to solve differential equations. A difference &tpn is an equation
which tells you what th&+ 2th term in a sequence is in terms of #he 1th
andkth terms, for example. Difference equations arise in nucaétreat-
ments of differential equations, in discrete time sampéind when studying
systems that are intrinsically discrete, such as populatiodels in ecology
and epidemiology and mathematical modelling of mylinatedres.

e Generalizes the complex sinusoidal representations of[XdFnore
generalized representation using complex exponentiabtsg
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Im{z}

rejﬂ

Re{z}

z-plane

e Itis the discrete time counterpart of Laplace transform

The z-Plane

e Complex number = rel® is represented as a location in a complex
plane g-plane)

The z-transform
e Letz=relQ be a complex number with magnitudeand angleQ.

e The signak[n] = 2" is a complex exponential anth] = r"cogQn) +
jrsin(Qn)

e The real part ok|[n] is exponentially damped cosine
e The imaginary part ok[n] is exponentially damped sine

e Apply X[n] to an LTI system with impulse responisi|, Then

yln] = H{x[n[} = h[n[+x]n]
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Im{z"}

n
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Vi = 3 hikxin—K

k:—OO

o If
x[n] = 2"

we get )
yi = S higZ™*

k=—o00
yinj=2"'§ hikgz*
k=—o0
e Thez-transform is defined as

H(z) = % h[k|]z ¥

k:—OO

we may write as

You can see that when you do taéransform it sums up all the sequence,
and so the individual terms affect the dependence,dout the resulting
function is just a function of, it has nok in it. It will become clearer later
why we might do this.

e This has the form of an eigen relation, whefas the eigen function
andH (2) is the eigenvalue.

e The action of an LTI system is equivalent to multiplicatidritze input
by the complex numbeH (z).
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e If H(z) = |H(2)|e/®? then the system output is

yn] = |H(2)|e!%?2"

Usingz=rel® we get
y[n = [H(re!?)|r"cogQn+ ¢(re!?)+

j|H (re?)|r"sin(Qn+ @(rel?)

Rewritingx[n]

x[n] = Z" =r"cogQn) + jr"sin(Qn)

If we comparex[n] andy[n|, we see that the system modifies

— the amplitude of the input bjH (rel?)| and
— shifts the phase byg(rel®)

DTFT and the z-transform

e Put the value ofin the transform then we get

H(rel?) = i hn](re!?)—"

N=—o0

— 3 (B e

N=—oo

o We see thaH (rel®?) corresponds to DTFT dif[n]r .

e The inverse DTFT oH (rel®) must beh[n]r .
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e e can write

The z-transform contd..

e Multiplying h[n]r~" with r" gives

rn m

h[n] H(re/?)elndQ

—= E-[ .
Tt . .
h[n] = %{/_HH(reJQ)(reJQ)”dQ

e We can convert this equation into an integral axby puttingrel® = z
¢ Integration is ovef, we may consider as a constant

e \We have
dz= jrel?dQ = jzdQ

1
dQ = ~z1dz
)
e Consider limits on integral

— Q varies from—Ttto 1T
— ztraverses a circle of radiugn a counterclockwise direction
e We can writeh[n] ash[n] = 5 § H(2)2" dz

where¢ is integration around the circle of radilg = r in a counter
clockwise direction
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e Theztransformof any signak|n] is

e Theinverse z-transformof is
] = —— Fx@2 -z
- 2mj

e Inversez-transformexpressex|n| as a weighted superposition of com-
plex exponentialg”

o The weights ar¢;)X(2)z 'dz

e This requires the knowledge of complex variable theory
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Convergence
e Existence of-transform: exists only ifS__ ., X[n]z " converges
e Necessary condition: absolute summabilitijefz—", since|x[n]z~"| =

IX[n]r~"|, the condition is

IX[N]r~"| < oo

N=—oo

e The rangea for which the condition is satisfied is called thange of
convergence (ROC) of thez-transform

e ROC is very important in analyzing the system stability aetdvior

e \We may get identicak-transform for two different signals and only
ROC differentiates the two signals

e Theztransformexists for signals that do not have DTFT.
e existence of DTFT: absolute summabilityaf]

e by limiting restricted values for we can ensure thadn|r—" is abso-
lutely summable even thougin] is not

e Consider an example: the DTFT gfn] = a"u[n] does not exists for
lal >1

e If r > a, thenr—" decays faster thaxjn] grows

e Signalx[nr~" is absolutely summable arzetransform exists
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x|n]
- auln]
o ax|

i
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JF|
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Im{z}

z= el

Re{z}

z-plane

Figure 1.31: DTFT and-transform

The z-Plane and DTFT

e If x[n| is absolutely summable, then DTFT is obtained from zhe
transformby settingr = 1 (z= €/9), ie. X(e/?) = X(2)|,_eio as shown
in Figure??

Poles and Zeros

e Commonly encountered form of thetransform is the ratio of two

polynomials inz~*

_ bo+bizt4 . bz M
ag+ayzl+...+byz N

X(2)
e It is useful to rewriteX(z) as product of terms involving roots of the

numerator and denominator polynomials

_ b, (1-az?
My (1—dezt)

X(2)

whereb = bg/ag
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Poles and Zeros contd..

e Zeros: Thec, are the roots of numerator polynomials

e Poles: Thely are the roots of denominator polynomials

e Locations of zeros and poles are denoteddyyand "x” respectively
Example 1

e Theztransform and DTFT o%[n] = {1,2,—1,1} starting an= —1
e X2 =3p XNz "=52 Xnz"=2z4+2-714+272

o X(e/) =X(2)|,_gic =€+ 27124 7120

e Theztransform and DTFT o%[n] = {1,2,—1,1} starting an= —1
e X2 =3p XNz "=52 Xnz"=2z4+2-714+272

o X(e/) =X(2)|,_gic =€+ 27124 7120

Example 2

e Find thez-transform ofx[n] = a"u[n], Depict the ROC and the poles
and zeros

e Solution:X(z) = Y- _0"unz "=y (%"
The series converges|i| > |a|
1
X(Z) —1-0z I z—zcx’ ’Z’ > |(X|
Hence pole at=a and a zeroat=0

e The ROC is
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e N
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z-plane

Figure 1.32: Example 2

Example 3

e Find theztransform ofx[n] = —a"u[—n— 1], Depict the ROC and the
poles and zeros

e Solution:X(2) = — 52 (9" =~ $a(§)=1- 38 o(d)"
The series converges|i| < |d]
X@=1-15==7 ld<lal.
Hence pole at=a and a zeroat=0

e The ROC is
Example 4
e Find thez-transform ofx[n] = —u[—n— 1]+ (3)"u[n], Depict the ROC
and the poles and zeros
o Solution:X(2) = S5 _o(3)"ulnz "~ u[-n—1]z"
= mo(3)" — Sntw(3)" =S ho(z)"+1- T
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Im{z}
/// \\\
/£ \
/ \
( i
o) Re{z}
\ 0 N
\ /
N\ /
N 7/
\\\“,//
z-plane
Figure 1.33: Example 3
e The series converges|id] > 5 and|z < 1
X(Z)=—+ 11—t 1pcld<1
1171 1-7 '
z(2z— 3
X(z) = ( . 2)
- D1

Hence polesa=1/2, z=1and zerosat=0, z=3/4

e The ROC is

1.3.2 Unsolved problems from [2]

Unsolved ex. 7.17a

e Find thez-transform ofx[n] = d[n— k], k > 0. Depict the ROC and the
poles and zeros

e Solution:X(z) = S x[njz "=z z#0
Hence multiple poles &= 0
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Im{z}
//_‘—_-_‘-\\
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\
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| |\ 0 l /f 3 Tl 1z}
\\ \\ 2/ 4 /
\ - /
/
\\ /
e - z-plane

Figure 1.34: Example 4

Unsolved ex. 7.17b

e Find theztransform ofx[n] = d[n+ k|, k > 0. Depict the ROC and the
poles and zeros

e Solution:X(z) =y xnjz"=2Z, all z
Hence multiple zeros at= 0

Unsolved ex. 7.17d

e Find thez-transform ofx[n] = (3)"(u[n] — u[n—5)).

e Solution: X(z) = zﬁzo(%z—l)” o all zFour poles azr=0,
and one pole at=1/4
Five zeros az = %ejk%", k=0,1,2,3,4

Note that zero fok = 0 cancels the pole at=1/4
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1.3.3 Exercises
Find thez-transforms of
@ (&) (b) (39 (© (-2 )
(d) (4,16,64,256,...) (e) (1,—-3,9,—-27,...) (f) (0,1,4,1264,160,...)
For(a) we haver =1/4 so
1 z 4z
Z[(E)} T z-1/4 4z-1 (1.5)
For (b) r = 3 giving For(a) we haver =1/4 so
K Z
23 = (L6)
In (c) r = —2 but this makes no difference
Z{((-29) = == (L.7)
z+2 '
In (d) we see that =4 so
Z[(4,16,64,256,...)] = Z_i4 (1.8)
andin(e)r =—-3so
z
1, - —27,..)] = ——= 1.
Z[( Y 37 97 Y )] Z+3 ( 9)
Finally, looking carefully a{ f) you realize
(k21 = (0,1,4,12,64,160,...) (1.10)
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and, hence,

7](0,1,4,12,64,160,...)] = (1.11)

-2y

Conclusions
e Theztransform and the z-plane

Importance of ROC

Relation between the DTFT and thd¢ransform

Convergence of thetransform

Poles and zeros of(z)
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1.4 Class 4: Region of convergence (ROC)

Outline of today’s class
e Region of convergence
e Properties ROC
The z-transform

e Theztransformof any signak|n] is

e Theinverse ztransformof is
x[n] = 1 ?{X(z)z”_ldz
21

Convergence
e Existence of-transform: exists only ifS,__ ., X[n]z " converges
e Necessary condition: absolute summabilitxjefz—", since|x[n]z~"| =

IX[n]r~"|, the condition is

IX[N]r~"| < oo

N=—o0
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1.4.1 Properties of convergence

e ROC is related to characteristicsxih|
e ROC can be identified frorX(z) and limited knowledge of|n|

e The relationship between ROC and characteristics okfiij@s used to
find inverse z-transform

Property 1
ROC can not contain any poles

e ROC is the set of alt for which z-transform converges
e X(z) must be finite for alk

e If pis a pole, thenH(p)| = « andztransform does not converge at
the pole

e Pole can not lie in the ROC

Property 2
The ROC for a finite duration signal includes entrrplane excepz = 0
or/andz= o

e Letx[n| be nonzero on the interva} < n < ny. Thez-transform is

The ROC for a finite duration signal includes entrrplane excepkz = 0
or/andz= o
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e If a signal is causal, > 0) thenX(z) will have a term containing 2,
hence ROC can not include= 0

e If a signal is non-causahf < 0) thenX(z) will have a term containing
powers ofz, hence ROC can not incluge=

The ROC for a finite duration signal includes entrrplane excepz = 0
or/andz=

e If no <0 then the ROC will includeg=10
e |f Ny > 0 then the ROC will include = o

e This shows the only signal whose ROC is entiiglane isx[n] = cd[n],
wherec is a constant

Finite duration signals

e The condition for convergence [X(z)| < o

X@I =] 5 Xz

N=—o0

<Y Wz

N=—oo

magnitude of sum of complex numberssum of individual magni-
tudes

e Magnitude of the product is equal to product of the magnsude

00} (o]

Xz =5 IXnll|z™

N=—o0 N=—o0
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¢ split the sum into negative and positive time parts

o Let .
L@= Y Kl
@)= 3 il

e Note thatX(z) =1_(z) +1+(2). If both1_(z) andl_(z) are finite, then
X(2) if finite

e If x[n] is bounded for smallestve constantsA_, A, r_ andr_ such
that
Xn| <A_(r-)", n<0

X[l A1), N0

e The signal that satisfies above two bounds grows no faster(thg"
for +venand(r_)" for —ven

e If the n < 0 bound is satisfied then

e Sum converges iz <r_
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e Ifthe n > 0 bound is satisfied then

L@=AS ()

< [M+n
ALY ()
& 1
e Sum converges ifz] >r

o If r. < |zl <r_, thenbotH, (z) andl_(z) converge an&(z) converges

To summarize:

If r > r_ then no value ot for which convergence is guaranteed

Left handed signal is one for whiotin] = 0 forn > 0

Right handed signal is one for whigin] =0 forn < 0

Two sided signal that has infinite duration in both +ve anddwvec-
tions

e The ROC of a right-sided signal is of the forja > r,

Finite duration signals contd..

e The ROC of a left-sided signal is of the form < r_

e The ROC of a two-sided signal is of the form < |z > r_
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Figure 1.35: ROC of left sided sequence
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Figure 1.36: ROC of right sided sequence
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Figure 1.37: ROC of two sided sequence
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Figure 1.38: ROC of Example 1

1.4.2 Examples

Example 1

e Identify the ROC associated with tzéransform fox[n] = (5 )"u[—n] +
2(z)"u[n]

o TheztransformisX(z) = T9_ o (52)"+25 5 o(&)" =S o(—22)%+
25 mo(z)"

e The first series converges f@ < % and second series converges for
1z > 3.

e Both series must converge f{(z) to converge, so the ROC $<
2] < 3, andX(2) is

1 27
X =
@) 1122 72-1

e Poles are at= —(1/2) andz= (1/4) and zeroisar=0
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z-plane

Figure 1.39: ROC of Example 2

Example 2
e Identify the ROC associated with taeransform fory[n] = (3%)"u[n] +

2(3)"uln]

e Thez-transform is

Y@= 3 (5423 )"

e The first series converges fa > % and second series converges for

1z > 3.
e Both series must converge f¥(z) to converge, so the ROC jg > %

andY(z) is
z 2z

Y(z) = +
AT AR

e Polesare at= —(1/2) andz= (1/4) and zeros are at= 0. The ROC
is outside a circle containing the pole of largest radies—1/2
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Example 3

o Identify the ROC associated with tizéransform fom[n] = (5 )"u[—n] +
2(3)"u[-n]

e Theztransformis

0

B 0
9= 3 (5423 ()

Z —27) +22 4z

e The first series converges f@ < % and second series converges for
4 <3

e Both series must converge df(z) to converge, so the ROC g < %1,

andW(z) is
1 2

1+22+ 1-4z

e Polesare at=—(1/2) andz= (1/4) and zeros are at= 0. The ROC
is inside the a circle containing the pole of smallest raditsl/4

W(z) =
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i | ¥ Re{z}
z-plane

Figure 1.40: ROC of Example 3

Example 4

e Find ztransform and ROC for two sided signdh] = al", for both
lal < 1landla| > 1

e Theztransformis

-1 00

X@= Y (@ zH'+ Y (@/2"

=y (az)f— 1+ i (a/2)"
n=0

k=0

e The first series converges fuz| < 1, ie. || < % and second series

converges fod. < 1, ie.|z] > a.
ges for

e Both series must converge f&(z) to converge, so the ROC & <

7 <3
1 1 —Z z

X == —1 —_—
@=1"g 1Tzt
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)
+ Re{z]
[

z-plane

Figure 1.41: ROC of Example 4
e Polesareat=—(1/a) andz=a and zeros are at=0. Leta =1/2

e What happens wheju| > 1? The first series converges forz| < 1,
ie. |7 < % and second series converges%)K 1,ie.|z] > a.

e Both series must converge f&(z) to converge, so the ROC & <
|zl < %, which is empty set

1.4.3 Unsolved examples from [2]

Unsolved ex. 7.18

e Given the z-transforms, determine whether the DTFT of theeco
sponding time signals exists without determining the tingaal, and
identify the DTFT in those cases where it exists:

Unsolved ex. 7.18(a)

5 1
° X(Z):@, |Z|>§
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e ROC includedz| = 1, hence DTFT exists

e DTFT s
i )
X)) =—F——
(%) 14 2eiQ
Unsolved ex. 7.18(b)
* X(2) = @ 2 <3

e ROC does notincludg| = 1, hence DTFT does not exists

Unsolved ex. 7.18(c)

=
* X(2)= (1—%?21)(1+3r1’

2 <3
e ROC does notincludg| = 1, hence DTFT does not exists

Unsolved ex. 7.18(d)

=
* X(2)= (1—%?21)(1+3r1’

I<l7<3
e ROC includedz| = 1, hence DTFT exists
e DTFT s _
X e 1
z) = . .
@ (1-3e712)(1+3e719)

Unsolved ex. 7.19

e The pole and zero locations &f(z) are depicted in the z-plane on
the following figures. In each case, identify all valid RO®s X(2)
and specify the characteristics of the time signal corredpwm to each
ROC.
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Unsolved ex. 7.19(a)

e Two poles az= —3/4 andz=1/3. Two zeros ar = 0 andz= 3/2
(Fig. P7.19(a))

e Theztransformis
Cz(z— %’)

(z+3)(z—3)

e There are three possible ROCs

X(z) =

e There are three possible ROCs

e |2 > 3, x[n] is right sided sequence

o < |7 < 3, x[n]is two sided sequence
o |zl < 3, X[n] is left sided sequence
Unsolved ex. 7.19(b)

e Three polesat=0,z=1+ jandz=1—j. Four zeros at= +1 and
z=+] (Fig. P7.19(b))

e Thez-transform is

C(Z-1)

X(Z) = i —jn
2(z—+/2e%)(z—/2e%)

e There are two possible ROCs
e |2| > /2,x|n| is right sided sequence

e |2 < v/2,x[n] is two sided sequence
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1.4.4 Exercises

Work out thez-transform of the following sequences
1. (2,4,10,28,...)
2. (2,-2,10,—26,...)
3. (3,0,0,0,...)
4. (0,0,1,1,1,..))
5. (0,2,4,10,28,...)
6. (0,0,1,2,4,8,...)

7.(1,1,0,1,1,1,...)
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Answers

1. Consider the sequence

(2,4,10,28,...) = (1,1,1,1,...)+(1,3,9,27,...) (1.12)
use linearity
Z[(2,4,10,28,...)] = 2Z[(1,1,1,1,...)]+ 2[(1,3,9,27,...)]
2 _
_ Z . z 24 (1.13)

z—1 z-3 72#—-4z+3
2. Consider the sequence
(2,-2,10,—26,...) = (1,1,1,1,...)+(1,-3,9,-27,...) (1.14)
use linearity

2[(2,-2,10,-27,...)] = Z[(1,1,1,1,...)]+ 2[(1,-3,9,-27,...)]
z z 222+ 27

- z—1+z+3:zz+22—3 (1.15)
3. (3,0,0,0,...) = 3(8) s0 Z[(3,0,0,0,...)] = 3.
4. (0,0,1,1,1,...) istheko = 2 delay of(1,1,1,1,...) which means that
Z[(0,0,1,1,1,...)] = izi (1.16)
zzz—-1

5. (0,2,4,10,28,...) is (x_1) Where(xx) = (2,4,10,28,...) as in first exercise, hence,

1 27247 2z—4

Z[(0,2,4,10,28,...)] = 27 I3 73 (1.17)
6. (0,0,1,2,4,8,...) = (2¢?) and Z[(2¥)] = z/(z— 2), so,
2[(0,0,1,2,4,8,.. )] = =2 ! (1.18)

27-2 2z-2)
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7. This one is a bit trickier. Notice that

(1,1,0,1,1,1,...) = (1,1,1,1,1,...) — (0,0,1,0,0,...) (1.19)

and(0,0,1,0,0,...) = (&_2). Hence, using linearity and the delay theorem we get

Z[(1,1,0,1,1,1,...)] =

7[(1,1,1,1,1,...)] - 2[(0,0,1,0,0,...)]
z 1 B-z+1

122D 20

Conclusions

e Region of convergence

e Properties ROC
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1.5 Class 5: Properties of-transform

Outline of today’s class
e Properties of-transform

— Linearity

— Time reversal

— Time shift

— Multiplication by a"
— Convolution

— Differentiation in thez-domain
The z-transform

e Theztransformof any signak|n] is

e Theinverse z-transformof X(z) is
x[n] = 1 }[X(Z)z”_ldz
21

Convergence

e Existence of-transform: exists only ify 7., x[n]z~" converges
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e Necessary condition: absolute summabilitxjefz—", since|x[n]z~"| =
IX[n]r~"|, the condition is
X[[r " <o
N=—o0
Properties of convergence
e ROC can not contain any poles
e The ROC for a finite duration signal includes entzrplane except =

0 or/andz = o

1.5.1 Properties ofz-transform
e We assume that

z

x[n] «— X(z),  with ROC Ry
Y4

yinl «—Y(z), withROC Ry

e General form of the ROC is a ring in tleplane, so the effect of an
operation on the ROC is described by the a change in the D&

P1: Linearity

e Theztransform of a sum of signals is the sum of individe&lansforms
ax(n] + by[n] = aX(2) +bY (2),

with ROC at least RyN Ry
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e The ROC is the intersection of the individual ROCs, sincezttransform
of the sum is valid only when both converge

P1: Linearity

e The ROC can be larger than the intersection if one or moresténm
x[n] or y[n] cancel each other in the sum.

)"uln] — (3)"u[-n—1]

NI=

e Consider an examplex[n] = (
e We havex|n] <= X(2)
Pole-zero cancellation

e X(2) = withROC 1 < |z < 3

o yIn = (3)"ln] — ()"l

e We havey[n] <= Y(2)

—(3)2
(z-3)(z-3)

e Find z-transform ofax[n| + by|n|

e Y(2) = ,with ROC |Z| > 3

e The pole-zero plot and ROC a&fn]

The pole-zero plot and ROC gin|

Linearity property indicates thak[n| + by[n| Z,a——2 _1b _(%

(z-3)(z3)

In general ROC is the intersection of ROCs,3e< |7 < 3

However whena = b, the term(3)"u[n] cancels in the time domain

signalax|n| 4 by[n] =
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Re{z}

Figure 1.42: Pole-zero plot and ROC>Jh|

Re(z)

Figure 1.43: Pole-zero plot and ROCyif|
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=a(— (3)"u[-n-1]+
e The ROC is larger now, ie} < |z| < 3

e In thez-domain
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e The zero az =  cancels the pole a= 3, so

aX(z)+bY(z) = a(

e The cancellation of the terr})"u[n] in time domain corresponds to
cancellation of the pole at= % by a zero in the-domain

e This pole defined the ROC boundary, so the ROC enlarges wigen th
pole is canceled

e The ROC can be larger than the intersection if one or moresténm
x[n] ory[n] cancel each other in the sum.

P2: Time reversal

e Time reversal or reflection corresponds to repladitny z— 1. Hence,
if Ry is of the forma < |z| < b then the ROC of the reflected signal is
a<l/|zl<borl/b<|z<1/a

If x[n] < X(z), with ROC Ry

1 . 1
Then x[—n]éX(E), with ROC =

X

Proof: Time reversal

e Lety[n| =x[—n|
Y(Z) - Z;o:—oo X[—I’]]Z_n
Let] = —n, then

Y(2) =32 _oxl]Z
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Y(@) =37 _oX1(3)
Y(2) =X(3)
P3: Time shift

e Time shift of ny in the time domain corresponds to multiplication of

Z "o in thez-domain
If x[n] < X(z), with ROC Ry

Then x[n—ng| <2z ™X(2),
with ROC Ry exceptz=0or |z = o
P3: Time shift, ng > 0
e Multiplication by z~" introduces a pole of ordey, atz=0
e The ROC can not include= 0, even ifR; does include =0

e If X(2) has a zero of at least ordeg at z= 0 that cancels all of the

new poles then ROC can include- 0
P3: Time shift, ng < 0
e Multiplication by z~" introduces, poles at infinity

e Ifthese poles are not canceled by zeros at infinitf (r) then the ROC
of z™X(z) can not includez| = o
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Proof: Time shift

e Lety[n] =x[n—ny]
Y(2) =S wX[N—NoJz "
Let] = n—ng, then
Y(2) =372 o xljz )
Y(2) =25 x|z
Y(2) =z X(2)

P4: Multiplication by a”

e Leta be a complex number
If x[n] <% X(z), with ROC Ry
Then an] % X(é), with ROC |al|Ry
e |0|R indicates that the ROC boundaries are multipliedddy

e If Riisa< |z < bthenthe new ROC igr|a< |z < |a|b

e If X(z) contains a polel, ie. the factor(z—d) is in the denominator
thenX(Z) has a factofz— ad) in the denominator and thus a pole at
ad.

e If X(2) contains a zerg, thenX (%) has a zero atic

QN

e This indicates that the poles and zeroX¢z) have their radii changed
by |a

e Their angles are changed byg{a}
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Im|z) Im{z}

arg{c) arg(c) + argfed]

| |

I._:Lrgh” Iod | ¢l arg{d} + arg{et)

Refz} Rejz}

z-plane z-plane
(a) (b)

e If |a| =1 then the radius is unchanged and i +ve real number then
the angle is unchanged

Proof: Multiplication by a"

e Lety[n] =a"x[n|

Y(2) = ax[njz "
% 7
Y@= 3 A
Y(2)=X(2)

P5: Convolution

e Convolution in time domain corresponds to multiplicationthe z-
domain If x[n] <> X(z), with ROC R¢If y[n]<*>Y(z), with ROC R,
Then x[n] xy[n] < X(2)Y(2),

with ROC at leastR¢N Ry

e Similar to linearity the ROC may be larger than the intensecof Ry
andRy
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Proof: Convolution

e Letc[n| = x[n| xy[n|

P6: Differentiation in the zdomain

e Multiplication by n in the time domain corresponds to differentiation
with respect t and multiplication of the result by-zin the z-domain
If x[n] <%= X(z), with ROC R Thennx[n] «— —z&X(z) with ROC Ry

e ROC remains unchanged

Proof: Differentiation in the zdomain

e We know
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Differentiate with respect ta

d _ - —n,—1
d_ZX(Z)_n:Zoo( n)x[njz "z
e Multiply with —z
—ZEX(Z) = i —(—n)x[njz "z 1z
dz o
—zEX(z) _ 5 nx[njz "
dz oo

Then nx[n] <= —szZX(z) with ROC Ry

1.5.2 Examples

Example 1
Use thez-transform properties to determine théransform

o X[ = n((7")"u[n]) * (7)"u[-n]

e Solution is:
aln] = ()"u[n] <= A(z) = H?_grl, 2 >3
bin] = nan] «= B(2) = ~zLA(2) = —zd%(@), 7| >
-1
bn] = na[n] = B(2) = a f%zz)z, 2 >3
V4
cn = (3)"u[n] <= C(2) = 1_;1;1, 2| > 3

Use thez-transform properties to determine théransform

o X[ = n((75")"u[n]) * (z)"u[-n]
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e Solution continued
dn] = c[-n] = () "u[-n <= D(@)=C(}) =, 14 <4
4

1 1,
x[n] = (b[n] *d[n]) <= X(2) = B(2)D(2), T<lz<4
X[n] = (b[n] +d[n]) (13;)2 (1_1%2), 3<lz<4
x[n] = (b[n] «d[n]) = (H%j%(z_@, 3<lZ<4

Example 2
Use thez-transform properties to determine th&ransform

e x[n] = a"cogQon)uln], whereais real and +ve
e Solution is:

bln] = au[n] <~ B(z) = %+, |7 >a

Put cogQon) = 5el%" + Te= 12N 50 we get
x[n] = Zel%Nb[n] + 3~ 1%Np[n]

Use thez-transform properties to determine théransform
e Xx[n| = a"cogQyn)u[n|, whereais real and +ve

e Solution continued

Xn] <2 X(2) = 1B(el%2) + 1B(e 1%2), |2 >a
X[n] = X(2) = ST T3 |2>2a
) £ X(2) = Yl )

X[n] <= X(2) = 1—2;;;??2?)(223)11;2?2, 1zl > a
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1.5.3 Unsolved examples from [2]

Unsolved ex. 7.20(a)

Use thez-transform properties to determine th&ransform

o X[n| = (3)"un] * 2"u[—n — 1]

e Solution is:
aln = (3)"uln] < A(z) = ? 2 > 3 bln] = 2"u[-n—1]
B(2) = 151, ]z]<2a[]*b[]<—>X() A2)B(2), 3<l74<2

1 1

Unsolved ex. 7.20(b)
Use thez-transform properties to determine théransform

o X[n] = n((3)"u[n] * (3)"un—2])

e Solution is:
aln| = (3)"un] <= A(2) = erl 2> 3 b[n] = (3)"uln] <= B(2) =
i [2>Fclnl=bn-2 5 C(2) = #; izl > 1 x[n| =
n(a[n] *c[n)) « = X(2) = ~zLA2C(2) |7 > 1
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1.5.4 Exercises

1. Solve the difference equatioR, » — 4xx 1 — 5xx = 0 with xo = 0 and

X1 = 1.

2. Solve the difference equatioR, » — Xy 1 + 20xx = 0 with xg = 0 and

X1 = 1.

3. Solve the difference equatioR, » + 5xx. 1+ 6xx = 0 with xop = 0 and
X1 = 1.

4. Solve the difference equatioR, » + 2xx 1 — 48xx = 0 with xg = 0 and
X1 = 1.

5. Solve the difference equatioR, » + 7Xx 1 — 18x = 0 with xg = 0 and
X1 = 1.

6. Solve the difference equation, > — 6xx 1+ 5xx = 0 with xg = 0 and

X1 = 1.
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Answers
1. So, take the-transform of both sides
X —z— 42X —5X =0 (1.21)
hence
z
Move thezto the left and do partial fractions,
1 1 1 1 1
z 22-4z-5 (z-5)(z+1) 6(z—5) 6(z+1) (1.23)
Thus
z z
X= — 1.24
6(z—5) 6(z+1) (1.24)
and
1 1, ok
=-5-——(-1 1.25
%= g5 — (1) (1.25)
2. So, take the-transform of both sides
X —7— 92X+ 20X =0 (1.26)
hence
__Z (1.27)
- 22-9z+20 '
Move thezto the left and do partial fractions,
1 1 1 1 1
—X = = (1.28)

2" 2-92+20 (z-5)(z—4) z-5 z—4
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Thus
y4 y4
X = — 1.29
z—5 z-4 ( )
and
Xy = 5K — 4K (1.30)
3. So, take the-transform of both sides
X —7+52X +6X =0 (1.31)
hence
z
X=—5——— 1.32
722452+ 6 (1.32)
Move thezto the left and do partial fractions,
1 1 1 1 1
X — — = — 1.33
z Z2+5z+6 (z+2)(z+3) z+2 z+3 (1.33)
Thus
z z
= — 1.34
Zz+2 z+3 (1.34)
and
X = (—2)“— (—3) (1.35)
4. So, take the-transform of both sides
X — 74 22X — 48X =0 (1.36)
hence
y4
X=———— 1.37
72+ 27— 48 (1.37)

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 100
Move thezto the left and do partial fractions,
1, 1 B 1 B 1 N 1
z  7242z-48 (z+8)(z—6)  14(z+8) 14(z— 6}
(1.38)
Thus
z z
- _ 1.39
14(z+8) 14(z—6) ( )
and
1 Kk, Lk
Xk ﬂ,( 8) ﬂ6 (1.40)
5. So, take the-transform of both sides
X —z+72X—18X =0 (1.41)
hence
z
X T 18 (1.42)
Move thezto the left and do partial fractions,
1 1 1 1 1
=X — — = — 1.43
y4 2+7z2-18 (z—2)(z+9) 11(z—2) 11(z+9) (1.43)
Thus
z z
X = — 1.44
11(z—2) 11(z+9) ( )
and
1 Kk 1 K
Xe=1(-2)* = (-9 (1.45)
6. So, take the-transform of both sides
X —z7—62X+5X =0 (1.46)
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hence
___ ¢ (1.47)
- 22—-6z+5 '
Move thezto the left and do partial fractions,
1 1 1 1 1
—X = = = — 1.48
z 72-6z+5 (z-5)(z—1) 4(z-5 4(z-1) (1.48)
Thus
z z
X= — 1.4
4(z—5) 4(z—1) (1.49)
and
1, 1
=-5"—— 1.50
=457 (1.50)
Conclusions

e Properties of-transform

— Linearity

— Time reversal

— Time shift

— Multiplication by a"
— Convolution

— Differentiation in thez-domain
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1.6 Class 6: Inversez-transform

Outline of today’s class
e |Inversez-transform

e Directly from inversez-transform equation requires understanding of
complex variable theory

e Alternate methods of inversetransform

— Partial fraction method: uses bagitransform pairs and proper-
ties

— Power series method: expreX$z) in-terms ofz ! and find by
inspection

1.6.1 Partial fraction method

e In case of LTI systems, commonly encountered form-trtinsform is

_ bo+bizt 4.+ bz M

X(z) =
@ ag+aiz 14 ... +anz N

UsuallyM < N

e If M > N then use long division method and expr&$g) in the form

B M—N B é(Z)
X(z) = kZO fiz k+@
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whereB(z) now has the order one less than the denominator polyno-
mial and use partial fraction method to findransform

e The inversez-transform of the terms in the summation are obtained
from the transform pair and time shift property

125 3[n|
z " 5 3[n—no)

e If X(2) is expressed as ratio of polynomialsarinstead ofz ! then
convert into the polynomial af 1

e Convert the denominator into product of first-order terms

B bo + b]_Z_l—f— .ot b|\/|Z_'vI
ao[MiL1(1—dkz?)

X(2)

whered are the poles oX(z)

For distinct poles
e For all distinct poles, th&(z) can be written as

N
B Ax
X(2) = k; (1-dkz 1)

e Depending on ROC, the invergdransform associated with each term
Is then determined by using the appropriate transform pair

e We get
z Ax

1-— CIkZ_l7

Ax(dk)"u[n]
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with ROC z > dg OR

—A(d)"u[-n—1] £ Ac

1—-dez
with ROC z< dg

e For each term the relationship between the ROC associatbd\({)
and each pole determines whether the right-sided or lefdsiidverse
transform is selected

For Repeated poles

e If pole d; is repeated times, then there are terms in the partial-
fraction expansion associated with that pole

Aiy Ai, A,
1—-dzV (1— diZ_l)z’ Y (1— diZ_l)r

e Here also, the ROC of(z) determines whether the right or left sided
inverse transform is chosen.

(n+1)...(n+m—-1) A

A (m—l)l (dl) U[n] ‘ (1_diz—l)m7

with ROCiZ| >

e If the ROC is of the formz| < d, the left-sided inverse-transform is
chosen, ie.

n+1)...(n+m-—1)

(
A (m—1)!

(d)"u[—n—1] = with ROCiZ| < d

A
(1— diZ—l)m7
Deciding ROC

e The ROC ofX(2) is the intersection of the ROCs associated with the
individual terms in the partial fraction expansion.
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e In order to chose the correct invergdransform, we must infer the
ROC of each term from the ROC &(z).

e By comparing the location of each pole with the ROCX@g).

e Chose the right sided inverse transform: if the ROCX¢%) has the
radius greater than that of the pole associated with thengesmn

e Chose the left sided inverse transform: if the ROCXgk) has the
radius less than that of the pole associated with the givem te

1.6.2 Examples
Example 1la
Example of proper rational function
e Find the inverse-transform of
1-z14272
X(Z) = 1 _1 _1 _1 Y
(1-5z49(1-2z4H(1-z1)
with ROC 1< |z] < 2

e Solution: Use partial fraction and rewrite the expression

Aq Ay Az
1-1z1 (1-2z ) Ta-z Y

X(z) =

e Solving for A1, Ao and Az gives the values a8; = 1, Ao = 2 and

1 2 2
X(2) = (1— %2_1) T (1-2z1 (1-z7

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 106

Im{z}

Figure 1.45: ROC for Example 1
e Find the inverse-transform of the individual terms

e Use the relationship between the location of poles and the 8§X(z)

e From figure, one pole is &= % ROC has a radius greater than the
pole atz= % This term corresponds to right-sided sequence.

(_ 1
2 1-3z1

e Another pole is az = 2, ROC has a radius smaller than the pole at
z= 2. This term corresponds to left-sided sequence.

z 2

~2(2)"u[-n-1 > ——
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e Third pole is atz= 1, ROC has a radius greater than the pole-atl.
This term corresponds to right-sided sequence.

z 2

—2u[n| {1

e Combining the individual terms gives

x[n] = (%)”u[n] —2(2)"u[-n—1] — 2u[n|

o (b) Repeat the example 1 with the RG& |7 < 1

Example 1b

e From figure, one pole is &= % ROC has a radius greater than the

pole atz= % This term corresponds to right-sided sequence.

e Another pole is az = 2, ROC has a radius smaller than the pole at
z= 2. This term corresponds to left-sided sequence.

z 2

~22)"u[-n-1 >

e Third pole is az= 1, ROC has a radius smaller than the pole-atl.
This term corresponds to left-sided sequence.

z 2
1—z1

2u[—n—1]
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e Combining the individual terms gives

X[n] = (%)nu[n] —2(2)"u[-n—1] +2u[-n—1]

e () Repeat the example 1 with the RQEC< 3
Example 1c

e From figure, one pole is &= % ROC has a radius smaller than the
pole atz= % This term corresponds to left-sided sequence.

1

~()ul-n-1] X —

1,1
1 5Z

e Another pole is az = 2, ROC has a radius smaller than the pole at
z= 2. This term corresponds to left-sided sequence.

7 2
1-2z1

—2(2)"u[-n—1]

e Third pole is az= 1, ROC has a radius smaller than the pole-atl.
This term corresponds to left-sided sequence.

z 2

20[-n—1) >

e Combining the individual terms gives

x[n] = —(%)”u[—n ~ 1] 2(2)"[-n—1]

+ 2u[—n—1]
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Im{z}
Py
y \\
{ :
% } x Re{z)
-1 0 , 2
\ /

z-plane

Figure 1.46: ROC for Example 2

Example 2
Example of improper rational function

e Find the inverse-transform of

:z3—1022—4z+4

X(2) 222274

with ROC |7 < 1

e Solution: Find the locations of poles by determining thetsoaf de-
nominator polynomial

272 —4z+4=0

e We get the poles &= —1 andz=2

e The ROC and pole locations are

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 110

e ConvertX(z) into a ratio of polynomials iz ~*

1 1-10z1-4z721473 1

K== a2 )73

e The factor%z can be incorporated using time-shift property

e Use long division method and reduce the order of the numepaly-
nomial

e \We get quotient as-2z-1 + 3 and remainder as5z 1 — 2, then

—5z1_2
1—-7z1_272

Alz) = -2z 143+

e We haveX(z)

37A(z) andA(z) = -2z 1+ 3+W(2)
e Use partial fraction expansion to find the inversteansform oW (z)

5712 1 3

W(z) = = —
(2 1—-z1-2z72 1471 1-271

o We haveX(z) = 37A(z) andA(z) = —2z 1+ 3+ W(2)
e SO we can write

B 3
1+z1 1-2z1

A(z) = -2z 143+

with ROQZ| < 1
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e The ROC has a smaller radius than either pole, hence thesmeer
transform ofA(z)

aln] = —28[n— 1]+ 38[n] — (—1)"u[-n—1]
+3(2)"u[-n—1]
e Apply the time shift property
X[N — Ng| =z X (2),

with ROC Ry exceptz=0o0r |z] =

e Here, we haveX(z) = 3zA(2), son, = —1 and
x[n] = %a[n+ 1]
e So we gel[n| as
x[n] = %a[n +1] = -38[n] + 26[n+ 1] — %(—1)’”rl

u[—n—2] +3(2)"u[-n—2]

1.6.3 Unsolved example from [2]

Unsolved ex. 7.24(a)
Example of proper rational function

e Find the inverse-transform of
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144zt

X(z) = (1— %2—1)(1+%z—1)

with ROC |z| > 3

e \We can write
A B

+
1-3z1 1+4z1

Put z=0 andweget EA+B

X(z) =

13 4 1
P =1 —=-A+-B
ut z and we get 5 =3 +2
e Solve forAandB, we getA=2 andB= -1
e Put the vales of andB we get
2 -1

_|_
1-3z1 1+3z°1

e Take inverse-transform ofX(z), andx|n] is right-sided sequence

Xln] = 20)"uln] — (~ 2)"ufr
Unsolved ex. 7.24(b)
Example of proper rational function
e Find the inverse-transform of
144zt

X(2) = (1-3z (14321

with ROC|z] < 1
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e \We can write
2 -1

_|_
1-3z1 1+4z°1

e Take inverse-transform ofX(z), andx|n] is left-sided sequence

K] = ~203)"ul-n— 1]+ (— 3)"u[-n—1

Unsolved ex. 7.24(c)
Example of proper rational function

e Find the inverse-transform of
14§zt
(1-3zY(1+3zY

with ROC2 < |7 < 3

X(z) =

e e can write
2 -1

+
1-3z1 1+4z1

X(2) =
e Take inverse-transform ofX(z), andx[n] is two-sided sequence

X = ~2(3)"ul~n—1] — (~ 3)"ul
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1.6.4 Exercises

1. Solve the difference equatioR, » — 4xx 1 — 5xx = 0 with xo = 0 and

X1 = 1.

2. Solve the difference equatieR, » — 91+ 20x = 2K with xg = 0 and
X1 = 0.

3. Solve the difference equatioR, » + 5xi. 1 + 6Xx = (—2)k with xg =0
andx; = 0.

4. Solve the difference equatioR, » + 2xx 1 — 48xx = 0 with xg = 4 and
X1 = 2.

5. Solve the difference equatieR, > + 7xx 1 — 18xx = & with xg = 0 and

x1 = 0.
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Answers

1. So take the-transform of both sides
X —z—42X—5X =0 (1.51)

and move things around to g&t/z on one side and then do patrtial
fractions

1 1 1 A B
I — _ _ 1.52
z  Z22-4z-5 (z-5)(z+1) z—5+z+1 (1.52)

In the usual way, we have
1=A(z+1)+B(z—5) (1.53)

and puttingz= 5 givesA = 1/6 and puttingz= —1 givesB = —1/6.

Now
Z 1
X= 6(z—5) 6(z+1) (1.54)
and hence
X = 5k }(—1)'< (1.55)
=86~ " 6 '

2. So, in this example, the right hand side of the differeropgaéion is
not zero. Taking the-transform of both sides we get

y4

22X — 92X + 20X = zZ[(2¥)] = — (1.56)
Hence, since® — 9z+20= (z—5)(z—4)
Tx= ! (1.57)

z (z—5)(z—4)(z—2)
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The usual partial fractions tells us that

1 1 1 1
=5z—8z-2) 3z-5 224 ez=2 8
and so
S S
X = 35— 54+ 22 (1.59)
3. Again, taking the-transform of both sides we have
X + 52X 46X = —— (1.60)
z+2

Now, sincez? +5z+ 6 = (z+2)(z+ 3)

Iy ! (1.61)

z (z+2)2(z+3)

and there is a repeated root. The partial fraction expangitina re-
peated root includes the root and its square, so we get

(z+2)2(z+3) z+2Jr (z+2)2 + 743 (1.62)

and so
1=A(z+2)(z+3) +B(z+3) +C(z+2)? (1.63)

Choosingz= —2 givesB =1 andz= —3 givesC = 1. No value ofz
will give A on its own, so we choose another convenient value and put
in the known values dB andC:

1=6A+3+4 (1.64)
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soA = —1. Now, this means

z  _z .z
z+2 (z+22 z+3

(1.65)

and so
X = (2 +k(=2)* 1+ (-3)" (1.66)

4. Take thez-transform of both sides, taking care to note the initial-con

ditions
X — 472 — 27+ 2(2X — 42) — 48X =0 (1.67)
Thus
Z°X + 22X — 48X = 472 — 10z (1.68)
giving
1 4z— 10 A B
z" " (z+8)(z—6) ~ 718 726 (1.69)
Multiplying across we get
4z—10=A(z—6) +B(z+8) (1.70)
Choosingz = —8 we have
—42=—14A (1.71)
implying A= 3. Choosingg=6
14=14B (1.72)
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soB =1 and we get

3z Z
X = 1.73
z+8+z—6 ( )
and
X = 3(—8)K + 6 (1.74)

5. Now, taking thez-transform and using|[(dx)] = 1

X +72X—18X =1 (1.75)
and so
1 1 1 1
X= 2+7z2-18 (z—9)(z+2) 11(z—9) 11(z+2) (1.76)
Thus
1 V4 z
X=3 (11(2— 9) 11(z+ 2)) (1.77)
and so, using the delay theorem, we have
X { 0 k=0 (1.78)
k= :
Fot—L(-2k1 k>0

Partial fraction method
e It can be applied to complex valued poles
e Generally the expansion coefficients are complex valued

e If the coefficients inX(z) are real valued, then the expansion coeffi-
cients corresponding to complex conjugate poles will beerncon-
jugate of each other
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e Here we use information other than ROC to get unique inveesest
form

e We can use causality, stability and existence of DTFT

e If the signal is known to be causal then right sided inveraegform is
chosen

e If the signal is stable, then t is absolutely summable andJTdsT

e Stability is equivalent to existence of DTFT, the ROC indadhe unit
circle in thez-plane, ie.|zZ =1

e The inversez-transform is determined by comparing the poles and the
unit circle

e Ifthe pole isinside the unit circle then the right-sideddrsez-transform
is chosen

e Ifthe pole is outside the unit circle then the left-sidedarsez-transform
Is chosen

Conclusions
e Inversez-transform

e Directly from inversez-transform equation requires understanding of
complex variable theory

e Alternate methods of inversetransform
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— Patrtial fraction method: uses bagitransform pairs and proper-
ties

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 121

1.7 Class 7: Inversez-transform

Outline of today’s class

e Power series method of finding invers¢ransform: expresX(z) in-
terms ofz~! and find the inverse-transform by inspection

e The transfer function: another method of describing théesysand
also provides a method to find invera&ransform

Partial fraction method

e If X(2) is expressed as ratio of polynomialsarinstead ofz ! then
convert into the polynomial af 1

e If X(2) is in improper fraction the convert into proper fraction arse
time shift property

e Convert the denominator into product of first-order terms

e Depending on ROC, the invergdransform associated with each term
Is then determined by using the appropriate transform pmaib6th
distinct and real poles

e \We can use causality, stability and existence of DTFT

e If the signal is stable, then it is absolutely summable arsdiBFT

1.7.1 Power series expansion

e ExpressX(z) as a power series it or zas given ire-transform equa-
tion
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e The values of the signadn| are then given by coefficient associated
with z7"

e Main disadvantage: limited to one sided signals
e Signals with ROCs of the forrfz| > aor |z < a

e If the ROC is|z| > a, then expresX(z) as a power series i ! and
we get right sided signal

e If the ROC is|z| < a, then expres¥(z) as a power series imand we
get left sided signal

Using long division
e Find thez-transform of

2+z1 1
X(z) = ———— . with ROC —
(2) - %2_1,W| 2| > 5

e Solution is: use long division method to wri¥(z) as a power series
in z~1, since ROC indicates thain) is right sided sequence

e We get
1
X(z)=242z1+772%+ QZ_3+"'

e Compare withe-transform
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e We get
X[n] = 23[n] + 28[n — 1] 4 d[n — 2]
+%6[n—3]+...

o If we change the ROC t{z| < 3, then expan(z) as a power series
in zusing long division method

e We get
X(z) = —2—82— 16232 +...

e \We can writex[n] as
X[n] = —29[n] — 8d[n+ 1] — 16d[n+ 2]
—320[n+3]+...

Power series expansion

e Find thez-transform of

X(2) = € ,with ROC allzexceptjz| = o

e Solution is: use power series expansionddand is given by

o Lk
a

=y -

2%
e We can writeX(z) as
S (B
X —
(2) 2 K
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00 22k
X(z2)=y —
2
e \We can writex[n] as
0 n>0 ornis odd
x[n] =
) _1_ otherwise

(=)
1.7.2 Unsolved examples from [2]
Unsolved ex.7.28(a)

e Find x[n| using power series method if

e Write x[n] by comparing withX(z)
= 5 (Aykain— 2
= 3 (5)*3in-24

il — (3)2, nevenanch>0
0 n odd

Unsolved ex.7.28(b)
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e Findx[n] using power series method if

1 1
e Write X(2) in the power series
—47° &
X(2) = — =425 (42)¢

e Write X(2) in the power series

00

X(Z) — _422 Z (22)2k - _ z 22(k—|—1)22(k—|—l)
k=0 k=0

e Write x[n|] by comparing withX(z)

Unsolved ex.7.28(d)

e Find x[n| using power series method if
X(2)=In(1+zY), |7>0

e \We know
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e Write X(z) in the power series

1.7.3 The transfer function

¢ \We have defined the transfer function aszhieansform of the impulse
response of an LTI system

H(z) = % h[k|]z ¥

k=—o0
e Then we have/|[n] = x[n] xh[n] andY(z) = X(2)H(2)
e This is another method of representing the system

e The transfer function can be written as

H(z):%

e This is true for allzin the ROCs 0fX(z) andY(z) for which X(z) in
nonzero

e The impulse response is teg¢ransform of the transfer function

e \We need to know ROC in order to uniquely find the impulse respon
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e If ROC is unknown, then we must know other characteristichsas
stability or causality in order to uniquely find the impulgsponse

System identification

e Finding a system description by using input and output isnknas
system identification

e Ex1: find the system, if the input i§n] = (—1//3)"u[n] and the out is
yIn] = 3(=1)"u[n[+ (1/3)"u[n]

e Solution: Find the-transform of input and output. Us€&(z) andY (2)
to find H(z), then findh(n) using the inverse-transform

X(z) =

: 1
with ROC |z] > 3

[T

1+(3)zY)

3

Y(Z) - (1—}—2_1) + (1_(

. with ROC |7 > 1

wik| =

)z )
e \We can writeY (z) as

4
1+zH(1-(5z Y

Y(2) = with ROC 7] > 1

w|

e We knowH (z) =Y (z)/X(2), so we get

41+ (3)z°Y
(1+zYH(1-(5z Y

H(z) = with ROC |z] > 1

e \We need to find inversetransform to findx[n|, so use partial fraction
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and writeH(z) as

2

@) = 1171 1

with ROC |z > 1

wik| N
N—"

-1
e Impulse responsgn| is given by
h[n] = 2(—1)"u[n] +2(1/3)"u[n]
e Ex2: If the impulse response of an LTI systemhis] = (1/2)"u[n].
Find the input if the out ig[n] = (1/2)"u[n] + (—1/2)"u[n]

e FindH(z) andY(z), we haveX(z) =Y(z)/H(z), find x[n] by taking the
inversez-transform

e We getx[n| asx|n] = 2(—1/2)"u[n]
Relation between transfer function and difference equatia

e The transfer can be obtained directly from the differengeagion de-
scription of an LTI system

e \We know that
Z ay[n—k = Z bkXx[n — K]

e We know that the transfer functid#(z) is an eigen value of the system
associated with the eigen functidh ie. if x[n] = 2" then the output of
an LTI systenmy[n] = Z"H(2)

e Putx[n—k] = 2"K andy[n— k] = 2 "*H(z) in the difference equation,
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we get

N M
'S az*H@EZ) =2 bz ¥
kZO kZO
e We can solve foH(2)

DY -

H(z) =
@ S oz X

e The transfer function described by a difference equatiam rigtio of

polynomials inz" and is termed as a rational transfer function.

e The coefficient ofz ¥ in the numerator polynomial is the coefficient
associated witl[n — K] in the difference equation

e The coefficient oz K in the denominator polynomial is the coefficient
associated witly[n — K] in the difference equation

e This relation allows us to find the transfer function and died the
difference equation description for a system, given a nafiéunction

Example 1

e Find the transfer function and the impulse response for dusal LTI
system described by

e e can write
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e Write H(z) in terms of partial fraction expansion

2 1

H(z) = +
@ 1+3z1 1-(3)z?

e This is causal system so we can write

Example 2

e Find the the difference equation description of an LTI systeith

transfer function
5z2+2

H(z) = 2
(2 Z2+3242

e Solution: RewriteH () as a ratio of polynomials ia*

2 = 57141272
143714272

e Compare this with the difference equation description ef tilansfer
functionH (z), we getM =2 N=2bp=0,b; =5,bp =2,a0=1,a1 =
3anday =2

e \We can write the difference equation as

y[n] + 3y[n— 1] 4+ 2y[n— 2] = 5x[n— 1] + 2x[n — 2]

Transfer function

e The poles and zeros of a rational function offer much insigtat LT
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system characteristics

e The transfer function can be expressed in pole-zero fornabipfing
the numerator and denominator polynomial

e If ¢ anddy are zeros and poles of the system respectively aad
bo/ag is the gain factor, then

btz
Mei(1—dz?)

H(2)

e This form assumes there are no poles and zerns-dl

e Thep" order pole az = 0 occurs whetp =by = ... =b, 1 =0
e Thelh order zero az= 0 occurs whemg=a;=...=a_1 =0
e Then we can writéd(z) as

H(z) = bz P P(1-az )
' RS A —dez )

whereb = byp/a
¢ In the example we had first order polezat O

e The poles, zeros and gain factouniquely determine the transfer func-
tion

e This is another description for input-output behavior @& f#ystem

e The poles are the roots of characteristic equation
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Conclusions

e Power series method of finding invers&ransform

e The transfer function

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 133

1.8 Class 8: Causality, stability and Inverse systems

Outline of today’s class
e Causality of an LTI system and the inves&ransform
e Stability of an LTI system and the invergdransform
e |Inverse systems

e Stability and causality of an inverse system

1.8.1 Causality
e The impulse response of an LTI system is zerorfer 0

e The impulse response of a causal LTI system is determined fie
transfer function by using right sided inverse transforms

e The pole inside the unit circle in theeplane contributes an exponen-
tially decaying term

e The pole outside the unit circle in tlzeplane contributes an exponen-
tially increasing term
1.8.2 Stability

e The system is stable: if impulse response is absolutely salsterand
DTFT of impulse response exists

e The ROC must include the unit circle: the pole and unit citolgether
define the behavior of the system
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Im{z} hin]

A

z-plane

Figure 1.47: When the pole is inside the unit circle

h[n]
Im|z}

e Relz) = MTTIT” ;

I\-

z-plane

=]

Figure 1.48: When the pole is outside the unit circle
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Im{z} hin]

z-plane

Figure 1.49: Stability: When the pole is inside the unitlarc

e A stable impulse response can not contain any increasingnexial
term

e The pole inside the unit circle in theplane contributes right-sided
exponentially decaying term

e The pole outside the unit circle in theplane contributes left-sided
exponentially decaying term
1.8.3 Causal and stable system

e Stable and causal LTI system: all the poles must be insideitite
circle

¢ A inside pole contributes right sided or causal expondgtadgcaying
system

e A outside pole contributes either left sided decaying termctvis not
causal or right-sided exponentially increasing term wisahot stable
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hln]
Im{z)

%— Re{z) :’} T TT T TT T ] Y —_—

6 -4 =2 |0

|:.|=l

z-plane

Figure 1.50: Stability: When the pole is outside the unitleir

Im{z} h[n]

z-plane
Figure 1.51: Location of poles for the causal and stablesgyst
e Example of stable and causal system: all the poles are itisedenit
circle
1.8.4 Examples
Ex1: Causal and Stable

e Find the impulse response when (a) system is stable (b) ld@ysan
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Im{z}

X Re{Z}

Izl =1
z-plane

Figure 1.52: Location of poles in Example 1

this system be causal and stable?

H(2) = 2 + . T
 1-009eliz7l 1-09 izl 1+2z1

e Solution: The system has poleszat e/z andz= e /7 andz= —2
Ex1(a): Stable system

e The location of poles in the-plane

Exl(a): Stable system

e For stable system: the ROC must include the unit circle

e Two poles inside the unit circle contribute right sided term
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e The pole outside the unit circle gives left sided sequence
Ex1(a): Stable system
e Impulse response is
hin] = 2(0.9e/%)"u[n] 4 2(0.9e~ /%) u[n]
—3(=2)"u[-n—1]
h[n| = 4(0.9)”cos(£[n)u[n]

—3(—2)"[-n—1]

Ex1(b): Causal system
e For causal system: all the poles must contribute the rigleidsierms,
hin] = 2(0.9e!%)"u[n] +2(0.9e~ /%) u[n]
+3(—2)"uln|
hn] = 4(0.9)”cos(gn)u[n] +3(—2)"un]
Ex1(c): Causal and stable system

e For causal and stable system: all the poles must be insidatheircle

e \We have one pole at= —2, which is outside the unit circle, hence the
system can not be both stable and causal system

Ex2: Recursive system
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e Find the given recursive system is both stable and caligial py[n —
1] = x[n] with p = 1+ 155 andr is +ve

e H(z) = erl, a pole is az = p and is greater than one, the pole is

outside the unit circle and hence system can not be both Icanda
stable system

Ex3: Stable and causal system

e Find the impulse response of a stable and causal systemlkesbry
a difference equation

Vi + Z¥In— 1~ 5yn—2) = ~2xn] + xin—1

e Solution: find thez-transform from the difference equation and then
find the impulse response

Ex3: Stable and causal system

e z-transform s

DY
> k=0 &Z
_24 5,1
H(2) a2

T 1t+iri-1z2
e Find the poles oH(z) and Write the denominator in product form
Ex3: Stable and causal system

e We get
—2+3z71
(1+3zY(1-3z1)

H(z) =
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e Write H(z) in terms of partial fraction expansion

-3 1

H(z) = +
@ 1+3z71 1-1z1

Ex3: Stable and causal system

e Now write the impulse response for a causal and stable system

Aln] = —3(— 2)"uln] + (3)"uir

1.8.5 Inverse system

e Impulse responséV) of an inverse system satisfies
h'™[n] « h[n] = 3[n]

whereh|n| is the impulse response of a system to be inverted

e Take inverse-transform on both sides gives

H™(2H(z) =1

- 1
H'™(z) = —
STE)
e The transfer function of an LTI inverse system is the invesb¢he

transfer function of the system that we desire to invert
e If we write the pole-zero form ofl (z) as

i PP A e
z MR (1—dz 1)
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whereb = byp/a

e Then we can writéd'™ as

Hiv g — 2 Miea (=)
bz P, (1 - oY)

e The zeros oH () are the poles dfi'™(z)
e The poles oH(2) are the zeros dfi'™(z)

e System defined by a rational transfer function has an inv@rsiem

e \We need inverse systems which are both stable and causaétb tine
distortions introduced by the system

e The inverse systerdl'™(z) is stable and causal if all poles are inside
the unit circle

e Poles ofH'™(2) are zeros of2)

e Inverse systenH'™(z): stable and causal inverse of an LTI system
H(z) existsif and only if all the zeros oH (z) are inside the unit circle

e The system with all its poles and zeros inside the unit cislealled
asminimum-phase system

e The magnitude response is uniquely determined by the plkapemse
and vice-Vera

e For aminimum-phase system the magnitude response is uniquely de-
termined by the phase response and vice-versa
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Im{z}

Re{z}

Iz =1
z-plane

Figure 1.53: Location of poles inrainimum-phase system

Ex1: stable and causal system

e Find the transfer function of an inverse LTI system desdribg a dif-

ference equation

yIn] —yin— 1]+ 2yin—2 = x{n] + 2xin— 1] — £xin— 2

Is the system stable and causal?

e Solution: find thez-transform from the difference equation and then
find the impulse response
e z-transform is
EDYEN TS
SheodkZ ¥
142711772
H (Z) — 4 18
1-z14322

H(2)

e Find the poles and zeros Hif(z) and write in the product form

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 143

e \We can writeH (z) as

(1-3zH(1+3zY
(1-3z1)2

H(z) =

e We can writeH'™(z) as

1 —3z71)?

Hinv o . (1
(2) = H(2) - (1—%2—1)(1+%Z_1)

e The poles of inverse system arezat 7 andz= —3

e Two poles are inside the unit circle, hence the system caothestable
and causal

e The zero is also inside the unit circle and the systemimsmum-phase
system

Ex2: inverse system

e Find the transfer function and difference equation desionpof the
inverse system of discrete LTI system, which describesipailt com-
munication channel (two path communication channel)

yln] = X[ +ax[n— 1]

e The system is

e z-transform s " y
_ Yk—oPxZ”

H(z) =
? S oaZ ¥
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Building Another building

Transmitting Receiving
antenna ) antenna

Mobile unit

Hz=1+az*’

e The inverse system is

11
H(z 1+az!

H'™(z) =
e The corresponding difference equation description is
y[n +ay[n—1] = x[n|

e The inverse system is both stable and causal whieq 1
Ex3: inverse system

e Find the transfer function of the inverse system and is tiierge sys-
tem stable and causal?

nln] = 28[n] + > (5)"uln] — 2 (— )"l
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e We knowH'™(z) = % SO we can write

(1-
(1-

zH(1+327Y
z 1) (14 2z7Y)

H'™(z) =

IR |NI=

e Polesare at= % andz= —2, so the system can not be both stable and
causal
1.8.6 Unsolved examples from [2]

Unsolved ex:7.34(a)

¢ Is the system (i)causal and stable (ii))minimum phase

22+ 3
HD =4 "5
2+z— 1%

H(z) = 22+ 3

(z+3)(z— %)
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e Write the poles and zeros

e Polesare at= % andz= —2, so the system can not be both stable and
causal

NIw

e Poles are at= ; andz= -2, and a zero is at= —

e (i) All poles are not insidéz| = 1, hence the system is not causal and
stable.

e (ii) All poles and zeros are not insidg = 1, the system is not mini-
mum phase.

Unsolved ex:7.34(b)

e Is the system (i)causal and stable (ii)minimum phase

yin] —yln— 1] — 3yin— 2 = 3] — 2xn — 1]

e Write the poles and zeros
e Poles are at = HT‘M and zeros are &= 0 andz= %

e (i) All poles are not insidéz| = 1, hence the system is not causal and
stable.

e (ii) All poles and zeros are not insidg = 1, the system is not mini-
mum phase.

e (i) All poles are not insidéz| = 1, hence the system is not causal and
stable.
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e (ii) All poles and zeros are not insidg = 1, the system is not mini-
mum phase.

Unsolved ex:7.35(a)

e Find the transfer function of an inverse system and detexmwimether
it can be both causal and stable

1-8z 1416272
H(z) = 1,1, 1,2
—5Z 1432
—4)2
H(2) = 2 1)2
(z—3)
e Write the inverse system
. (Z— 1)2
HIﬂV — 2
(Z) (2_4)2

e Double poles ar = 4, hence the poles are outside the unit circle and
inverse system is not stable and causal

Unsolved ex:7.35(b)

e Find the transfer function of an inverse system and detexmwimether
it can be both causal and stable

Z — 10

O =27
2

- -1

HII"IV(Z)_ > o

2=~ 100
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e Double poles ar = 1—90, hence the poles are inside the unit circle and
inverse system is stable and causal

Conclusions

e Causality of an LTI system and the inves&ransform
e Stability of an LTI system and the invergdransform
e |Inverse systems

e Stability and causality of an inverse system
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1.9 Class 9: Pole zero representation and frequency re-
sponse
Outline of today’s class
e Pole zero representation Hf(z)

e Determining the frequency response from poles and zeros

1.9.1 Frequency response

e The frequency response is obtained fromztieansform by substitut-
ingz=e“inH(2)

e The frequency response is transfer function evaluatedeuriti circle
in the z-plane

e We assume existence of DTFT ie. ROC includes the unit circle

e Substitutingz = e/? in the pole-zero representation Hf(z), and is
given by
Fe—ipQ qM-p —iQ
H(ejQ): be {P ﬂl\il(zll (1—Cke-J )
e IO (1 dee 1)

e RewriteH (e/?) in terms of +ve powers ofl®, this is done by multi-
plying e/N to both numerator and denominator

e We get o _
_ bl M2 mTPei? g

Mo, (812 —dy)

H(el?)
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o Examine the magnitude and phase respons¢(ef®?)
e Evaluate the magnitude &f(el??) at some fixed value d,
e Magnitude ofH (el?) atQ, is given by

o
_ bimeei? - o

H (el®%) .
Moy €12 —dy

e This consists of a ratio of products of the terfg? — g|, whereg is
either a pole or zero. We have terms with zeros in the numesaicd
poles in the denominator

e Use vectors to represent the complex numbers irz{ghlane

e e/ js a vector from origin to the poirg©%

e gis a vector from origin to the poirg

e €% _gis represented as a vector from the pajid the pointe!<o
e The vectors are

e The length of vector ige/® —g|

e Asses the contribution of each pole and zero to the oveedjuency
response by examinirlg!® — g| asQ, changes

e Find|el® — g| for different values of),
e The different vectors are

e Figure 1.55(a) shows the vectef — g for different values of)
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z-plane

Figure 1.54: Vectog andeé',Q in thez-plane

e g

L — —h El
o 5% Q, p

z-plane

{a) (b)

Figure 1.55:|e/% — g| for different values of2
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Figure 1.55(b) showke! — g| as a continuous function of frequency

If Q = arg{g}, then|e/® — g| takes a minimum value of % |g| when
g is inside the unit circle

If Q =arg{g}, then|el® — g| takes a maximum valug| — 1 wheng
is outside the unit circle

If Q =arg{g}, andgis close to the unit circlég~ 1), then|ejQO — 9|
becomes very small

|el® — g| contributes to the numerator {H (e/%)|
|H (el%)| tends to take minimum value at frequencies reegfg}

How for |H(el®)| decreases depends on how close it is to the unit
circle

If gis on the unit circle thefH (/)| = 0 atg
el — g| contributes to the denominator p (el %)

When|el — g| decreases thdhi (€/%)| increases depending on how
far the pole is from the unit circle

Close to the unit circlg causes large variation ji (el0)| at the fre-
guency ofgy
The zero tends to pull the frequency and pole tends to puskrehe

quency response

The zero tends to pull the frequency magnitude down at tlpiérecy
corresponding to zero

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 153

Im{z}

Re{z]

|z|=1

z-plane

Figure 1.56: Zero location of the system

e The pole tends to push the frequency magnitude up at thedrayu
corresponding to pole

Ex1. Two path channel

e The two path communication channel is given by

H(z) =1+az !
e Sketch the magnitude response of the system and its inwestansfor
a=0.5e7,a=0.8e7 anda= 0.95e%
e The zero location of the system

e The two path communication channel has a zem-at
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Im{z}

Re{z}

|z|=1

z-plane

Figure 1.57: Pole location of the inverse system

e The minimum ofH (el®?), for the system occurs at the frequency cor-
responding to the angle of zeroldiz) atQ = 11/4

e The minimum of|H (e/?)|is 1— |a|

e Asaapproaches unity, the channel magnitude respor@e-att/4 ap-
proaches to zero and the two path channel suppresses angicensg
of the input having frequency & = /4

e The pole location of the inverse system
e The inverse system has a polezat a

e The maximum oH™(el?), for the inverse system occurs at the fre-
quency corresponding to the angle of zerdidk) atQ = 11/4

e The maximum ofH'™(el?)| occurs aQ = 11/4, and iS_(1—1|a|)
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|H (™) |H meY)|

2 _/z/\
! . S — — . : I T— Ly
p  —p2 0 pi2 p p  -pR 0 p/2 p

Figure 1.58: Magnitude response of the system and investersywhera = 0.5ef

e As a approaches unity, the channel magnitude response of thesav
system afQ) = 11/4 approaches to infinity

e If the two path channel eliminates the components of thetinpuing
frequency aQQ = 11/4, the inverse system can not restore this compo-
nent to original value

e Large value of gain are undesirable since it also enhaneesnsdise.
H™9z) is highly sensitive to small changesadrasa — 1

e The magnitude response for the system and inverse systemanhe
T
0.5e#

e The magnitude response for the system and inverse systemawhe
0.8es

e The magnitude response for the system and inverse systemawhe
0.95¢7
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|”{E‘IVJ| “,’in\-'{ej'\f]l
5

-p  -p2 0 pr2 p p  p22 0 p/2 p
Figure 1.59: Magnitude response of the system and investeraywhera = 0.8
“,”E]'VH |H itw{f_f\u"ll
+2 20+
10
t i | - W ] 1 | | | \
-p -p/2 0 p/2 p —p —p/2 0 p/2 p

Figure 1.60: Magnitude response of the system and investeraywhera = 0.95¢
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Im{z)

Re{z]

lz| =1

z-plane

fah

Figure 1.61: Pole zero location for Ex2

Ex2. Magnitude response

e Sketch the magnitude response of an LTI system with trafsfetion

1+ 71

H(z) = i I
(1-0.96%7-1)(1—0.9eF 7 1)

e The system has zeroat —1 and poles at = 0.9ef andz=0.9e+

e The magnitude response due to zero, the system has zerototgni

response a@ =1t

e The magnitude response due to pale 0.9ej7n, large magnitude re-
sponse af) = +11/4, pole is close tozl = 1
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Im{z} lei 4 1]
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Figure 1.62: Magnitude response due to zero
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Figure 1.63: Magnitude response due to pz)IceO.erTn
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Im{z} | @€ — () 9g-iPr4| -1

Figure 1.64: Magnitude response due to px)i:eo.ge—jfn

e The magnitude response due to pple 0.9e j?", large magnitude re-
sponse af) = +11/4, pole is close tozl = 1

e The magnitude response due both poles and zero (product i&- al
sponses)

Ex3. Magnitude response

e Sketch the magnitude response of the LTI system with trafsfietion

z—1

HZ) =209

e The phase oH(el®) is evaluated in terms of phase associated with
each pole and zero

e \We write the phase as

arg{H (&)} = arg{b} + (N—M)Q
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I Hie 1Y ) ‘

-p -pi4 | pla p

Figure 1.65: Overall magnitude response for Ex2

Mop NCL
+ 5 arg{e’—a} - Y arg{el® —di}
k=1 k=1

e The phase oH(e/?)=sum of phases due to zeros - sum of phases due
to poles
e The first tern is independent of frequency

e The phase associated with each zero and pole is evaluatedrfggel® —

g}

e This is the angle associated with a vector pointing figtn el

e The angle is measured with respect to horizontal line pggsbkiough
g

e The contribution of pole or zero to the overall response temained
by the angle ol — g vector as the frequency changes

Frequency response
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Im{z}

z-plane

Figure 1.66: Phase associated with the pole or zero

|H(elV)|
20
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— V

—p —p/2 0 p/2 p

Figure 1.67: Overall magnitude response for Ex3
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e Exact evaluation of frequency response is best performatenaally

e \We can approximately estimate from the location of poles zs10s
and get an insight into the nature of frequency response

e Asymptotic approximations like Bode-plots are not useddiscrete
time systems, since the frequency range is limited to< Q < 11

1.9.2 Unsolved examples from [2]

Unsolved ex. 7.37(a)

e Sketch the magnitude response of the systems having tleaviod
transfer functions: S

H(Z) = —55—
1+%32°2

e Solution: WriteH(z) in the product form
1
(z+i8)(z—i3)

- 1
He¥)=— -~
(el2+ j§)(el? - j§)

H(2) =

e The locations of poles in theplane

e The magnitude response is
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Re

Figure 1.68: Pole zero locations in th@lane

P7.37 (a) Magniuds Response

4.5

Figure 1.69: Magnitude response
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Unsolved ex. 7.37(b)

e Sketch the magnitude response of the systems having tlevind

transfer functions: 1 )
1+z*+7
H (Z) _ + 3+

e Solution: WriteH(z) in the product form

e We get

Z+z+1
H(z) = B

elX el 41

H((e?) =

« Poles az = 0 (double), and zeros at= =5
e The locations of poles in theplane

e The magnitude response is
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Im

Figure 1.70: Pole zero locations in tkg@lane

Figure 1.71: Magnitude response

Re
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Unsolved ex. 7.37(c)

e Sketch the magnitude response of the systems having tlevind
transfer functions:

B 1+z1
1+ 13cog Nz 1+ Hz2

H(z)

e Solution: WriteH(z) in the product form and we get

1+z1
H(2) = g o P
(1-geszh(1—es 1)
_ ai20 | gi0
H(el?) = il

e+ (18/10)coq §)el® +81/100
e Zeros az= —1 (double), and poles at= et T

e The locations of poles in theplane

e The magnitude response is

Conclusions

e Pole zero representation Hf(z)

e Determining the frequency response from poles and zeros
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Figure 1.72: Pole zero locations in th@lane

Figure 1.73: Magnitude response

Re
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1.10 Class 10: Unilateral-transform

Outline of today’s class
e Unilateralz-transform
e Properties of unilatera-transform
e Solving difference equation with initial condition

e Implementations of continuous time systems

1.10.1 Unilateralz-transform
e Useful in case of causal signals and LTI systems

e The choice of time origin is arbitrary, so we may choaose 0 as the
time at which the input is applied and then study the resptordanes
n>o0

Advantages

e We do not need to use ROCs

e It allows the study of LTI systems described by the diffeeaquation
with initial conditions

Unilateral z-transform

e The unilaterak-transform of a signai[n] is defined as
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which depends only or[n| forn> 0

e The unilateral and bilaterattransforms are equivalent for causal sig-

nals
1

1-az1
1—acogQe)z !
1—2acoqQq)z 1+ a2z 2

a"u[n] <2

a"cogQon)uln] 2

1.10.2 Properties

e The same properties are satisfied by both unilateral antelalaz-
transforms with one exception: the time shift property

e The time shift property for unilaterattransform: Letw[n] = x[n — 1]

e The unilaterak-transform ofw[n] is

W(z) = x[-1] + ilx[n —1]z"

W(2) =x-1]+ ¥ xmz ™
m=0
e The unilaterak-transform ofw[n] is

W(z) =x[-1]+z1 % x[mjz™
m=0

W(z) = x[-1]+z X(2)
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e A one-unit time shift results in multiplication by ! and addition of
the constanx|[—1]

¢ In a similar way, the time-shift property for delays gredtem unity is
xn—k| <25 X[~k + X[—k+ 1]z 1+
X[z 7% (2) for k>0
¢ In the case of time advance, the time-shift property chatmes
XN+ kK <2 —x[0]2 — x[- 121+
...—xk—1]z+ZX(2) for k>0

1.10.3 Solving difference equation with initial conditiors

e Consider the difference equation description of an LTI eiyst
M

> ayn—k =% bxn—K
k=0

e \We may write thez-transform as

A(2)Y(2) +C(2) =B(2)X(2)

where "
A(z) = z az® and B2 = z bz
K=0
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e We get
N-1 N
C=3 5 ayl-k+mz™
mM=0k=n+1

e We have assumed thdn| is causal and

xn—k| <2 77X (2)
e The ternC(z) depends on thH initial conditionsy[—1],y[—2],...,Y[—N]
and theay
e C(2) is zero if all the initial conditions are zero

e Solving forY(z), gives

e The output is the sum of the forced response due to the inmlthen
natural response induced by the initial conditions

e The forced response due to the input

B(2)
@ (2)

e The natural response induced by the initial conditions

C(2)

A(2)

e C(2) is the polynomial, the poles of the natural response aredbis r
of A(z), which are also the poles of the transfer function
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e The form of natural response depends only on the poles ofyitems,
which are the roots of the characteristic equation

First order recursive system

e Consider the first order system described by a differencateaqu

y[n] — py[n—1] = x[n|

wherep =1+r/100, and is the interest rate per period in percent and
y[n] is the balance after the deposit or withdrawakof

e Assume bank account has an initial balance of $10,000/- anc &%
interest compounded monthly. Starting in the first montthefd¢econd
year, the owner withdraws $100 per month from the accounhet t
beginning of each month. Determine the balance at the Stadah
month.

e Solution: Take unilaterat-transform and use time-shift property we
get
Y(@) - py[-1+2 Y (2) = X(2)

e Rearrange the terms to fint{z), we get

(1-pzZ Y (2) =X(2) +py[-1]

X(2) py[—1]

Y(@) = 1-pz1 1-pz1
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[
e Y(z) consists of two terms

— one that depends on the input: the forced response of thensyst

— another that depends on the initial conditions: the natesagonse
of the system

e The initial balance of $10,000 at the start of the first moasttne initial
conditiony[—1], and there is an offset of two between the time index
and the month index

e y[n] represents the balance in the account at the start of the"
month.

6
e We havep = 1+ 1g; = 1.005

e Since the owner withdraws $100 per month at the start of ma8th
(n=11)

e \We may express the input to the systenxg = —100u[n— 11}, we

get
—100z 1
X(z) = ———
@) 1—-z1
e We get
B ~11
Y = 100z 1.005(10,000)

(1—zD(1-100% 1) " 1-1.005% 1
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e After a partial fraction expansion we get

20,00z 11 20,000z 11 10,050
Y(Z) - 1 + — t+ —
1-z 1-1.0052-1  1-1.0051

e Monthly account balance is obtained by inversgansformingY (z)
We get

y[n] = 20,000u[n — 11] — 20,000(1.005)"1u[n— 11]
+10,050(1.005)"u[n]

e The last term 1M50(1.005)"u[n] is the natural response with the ini-
tial balance

e The account balance
e The natural balance

e The forced response
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Figure 1.74: Account balance
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Figure 1.75: The natural response
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Figure 1.76: The forced response
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Example 2

e Determined the forced respong® [n], the natural respong€V [n] and
outputy[n| of the system described by the difference equation

y[n] 4+ 3y[n— 1] = x[n] +x[n— 1]

if the input isx[n] = (%)”u[n] andy[—1] = 2 is the initial condition

e Solution: Find the unilatera-transform and then write in the partial
fraction form and find the out[n|, the forced response and the natural

response

e The outputis

e the natural response

y"[n] = —6(—3)"u[n]

1.10.4 Unsolved examples from [2]

Unsolved Ex. 7.41(a)
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e Find the unilaterat-transform ofx[n] = u[n+ 4

x[n] = un+4] <2 X(z ix
X _ - —N
(2 nZOZ
X(2) = 1—12—1

Unsolved Ex. 7.41(b)

e Find the unilaterak-transform ofw[n|] = x[n — 2] using (a) and time-

shift property

win] = x[n—2] <25 W(2) =X[—2] + X[- 1zt + 72X (2)

W(z)=1+z 1+

Unsolved Ex. 7.42(a)

e Use the unilaterat-transform to determine the forced response, the
natural response, and the complete response of the systmbdel
by the difference equation

yin] — 3yln—1] = 24
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e Solution: takez-transform ofx|n] is

1

X(2) = — =
@ 14+3z°1

e Takez-transform

Y(2) - %(z_lY(z) +1) =2X(2)

Y(2)(1— %2_1) = %+2X(z)

e z-transform
1

2
z1 1-371X(2)

e We know that
Y(2) =YV (2) +Y(D(2)

e Theztransform of natural response is

1 1
Y(n) D)=
@ 31-1z1
e The natural response is
1.1

y(n)[n] = §(§)nu[n]

e Theztransform of forced response is

1 1 1
X(z)=2
- - 1
1-3z71 1-3z 11435271

Y(f)(z) =2
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e Write the partial fraction expansion and write the forcespbanse and

IS given by

<
-
~~
N
I
|_\
+
Nl |01
N
=
|_\
|
Wi |0l
N
(SN
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Unsolved Ex. 7.42(b)

e Use the unilaterak-transform to determine the forced response, the
natural response, and the complete response of the systmbdel
by the difference equation

Vi~ gyln—2) =21
V-1 =1y[-2 =0, x| =2u[n

e Solution: takez-transform ofx|n| is

e Takez-transform

Y(z)— é(z‘zY(z) +zH=71X(2)
Y(2)(1— éz‘z) éz_1+z_1X(z)

e We know that
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e Theztransform of natural response is

e The natural response is

Y] = 2(5)"uln] — ¢~ 3)"in

e Theztransform of forced response is

9 3
Y(f)(z) 4 4 _

T1-z1 13lr1 1o

Wi |NIW

71

e Write the partial fraction expansion and write the forcespense and
Is given by
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Unsolved Ex. 7.42(c)

e Use the unilaterak-transform to determine the forced response, the
natural response, and the complete response of the systmbdel
by the difference equation

yin] — Z¥In— 1)~ Syln—2) = xn] +xin— 1]
V-l =1y[-2=-1 xin=3"n

e Solution: takez-transform ofx|n| is

1
X&) =11

e Takez-transform

Y(z)— %(z‘lY(z) +1)— %(Z_ZY(Z) +z1-1)

=X(2)+z2 (2

e ztransformY(z) is

Y(2)(1- %Z_l - éZ‘Z) =5t+g7 +A+ZHX(@)
2 1 1 (1+zHX(2)
LIRS e m R P e AR )
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e Theztransform of natural response is

1 1 1 1

Y(n) Z) = — -
@ 41-3z1 8143zt

e The natural response is

Y] = 5(5)"uln] — g~ )"

e Theztransform of forced response is

(0 5 5 13
Y\ (z) = — —
(2) 1-3z1 1_%2—1 1_1_%12—1

e Write the partial fraction expansion and write the forcespbanse and
IS given by
96 2, 1
(f) _ 7" n A L A L
YO = Z2(3)"ln] - = (= 5)"uln] - 25— 3)"uln

Continuous time

e Rewrite the differential equation

N k M dk
A Y(t) = S b X(t)
kZO dtk kZO dtk

as an integral equation. L&t (t) = v(t) be an arbitrary signal, and
set
t
v(”)(t):/ virDmydt, n=1,23,...

wherev(" (1) is then-fold integral ofv(t) with respect to time
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Rewrite in terms of an initial condition on the integrator as

t
v () = / VD (@) dt+v(0), n=1,2.3,...
0]

If we assume zero ICs, then differentiation and integraéicminverse
operations, ie.

d

av<“>(t) —vi™ V), t>0 andn=1,23,...

Thus, ifN > M and integratéN times, we get the integral description

of the system
S k=0Nay™ (1) = $ k= 0" 1)

For second order system widg = 1, the differential equation can be

written as
y(t) = —ary® (t) —aoy@ (t) +box(t) +arx (t)+box? t)

Conclusions

e Unilateralz-transform

e Properties of unilatera-transform

e Solving difference equation with initial condition

e Implementations of continuous time systems
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Figure 1.77: Direct form | structure
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Figure 1.78: Direct form Il structure
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1.11 Class11: Discussion of questions from previous ques-
tion papers
Outline of today’s class
e Solution to question papers

e Unsolved examples from the book

1.11.1 Theory part from the question papers

e Signal: power, energy, symmetric, non-symmetric, eved, pdriodic,
aperiodic

e Operations on signal
e Signal types: step, impulse, ramp
Systems

e Systems representations: (i) impulse response- chagehe be-
havior (ii)Linear constant coefficient differential or fdifence equation-
input output behavior (ii) Block diagram- as an intercortieecof three
elementary operations

e Systems characteristics: stability, causality, BIBO,dimvariance,
linearity, memory-less

Convolution

e For an LTI system
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e y[n| = x[n] xh[n|
Sampling theorem
e Why sampling

e Sampling frequency greater than twice the maximum frequenthe
signal

e Aliasing

Fourier series and transform

e Continuous and Periodic: use FS

e Continuous and Non-periodic: use FT
e Discrete and Non-periodic: use DTFT

e Discrete and periodic: use DTFS

1.11.2 Unsolved example from [2]
Unsolved example 1.43

e Asignalx(t) = 3cog20Q + §) is passed through a square law device.
Find the DC component and fundamental frequency

e Solution: We know co80 = 3(cos D + 1)

Y(t) =X(t) = (3005200 + )2
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Y(t) = 9c0$(200 + )

e We get

y(t) = 9/2004400 + - + 1)

e DC component:@2, Sinusoidal component/2cog40Q + 5 Amplitude:9/2,
Fundamental frequency2

Unsolved example 1.46
¢ Find the total energy of a raised-cosine pulse

X(t) = F(cogwt) +1), —mWw<t<Tw
B 0, otherwise

e Solution: The energy is

/w1 )
E:/ —(cogwt) 4 1)“dt
—n/w4

e The energy is

E= /On/wé(cosz(vvt) +2cogwt) + 1)dt

E—1 KA. 2wt 1 2 wt) + 1)dt
_E/o (écos( )+§+ cogwt) + 1)

13m
E= o 31/4w

Unsolved example 1.71

e Given atime varyind=C system. Is the system linear?
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Figure 1.79: Unsolved ex 1.52(t)y(2—t)
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Rt

[1
_gL/134
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Figure 1.80: Unsolved ex 1.52(gjt)y(2 —t)

e Doubling the input results in doubling the output acrossac#pr.
Hence, the property of homogeneity is satisfied

e The property of superposition is also satisfied.
Unsolved ex. 2.41(b)

e GivenRC system, find the effect of ISI for the input sequence "1110”
and "1000”. Here "1” is transmitted with the +ve pulse and With
the -ve pulse of duratiom sec. Assumd&C =1/T, RC=5/T and
RC =1/(5T). The channel is an ideal channb(t) = d(t))

e \We have

X(t) = p(t) + pt—1) + p(t—2) — p(t—3)
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Figure 1.81: For "1110”, assunle=1,forRC=1
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Figure 1.82: For "1110”, assumie= 1, forRC =5

y(t) = Yp(t) +Yp(t = 1) +yp(t —2) +yp(t —3)

For "1110”, assum& =1,forRC=1

For "1110”, assum& =1, forRC =5

For "1110”, assum& =1, forRC=1/5

For "1000”, assum& =1,forRC=1

For "1000”, assum& =1, forRC =5

e For "1000”, assum& =1,forRC=1/5
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Figure 1.85: For "1000”, assumie= 1, forRC =5
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Figure 1.86: For "1000”, assunie= 1, forRC =1/5

Unsolved ex. 2.49

e For a given impulse response, determine whether the camesmy
system is

— memory-less: if and only ifi(t) = cd(t)
— causal: if and only ih(t) =0 fort <0

— stable: Stable if and only fi(t) is bounded.
Unsolved ex. 2.49(b)
e hit) =e 2u(t—1)
e (i) has memory
e (ii) causal
e (iii) stable
Unsolved ex. 2.49(d)

o h(t) = 33(t)
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e (i) memory-less

e (ii) causal

e (iii) stable
Unsolved ex. 2.49(f)
e h[n] = (=1)"u[-n|
e (i) has memory

e (ii) not causal

e (ii) not stable
Unsolved ex. 2.51

e Suppose the multipath propagation model is generalizedketap
delay between the direct and reflected paths as shown by plog- in
output equatiory[n] = x[n| 4+ ax[n — k] Find the impulse response of
the inverse system.

e Solution:
h'™[n] 4 ah'™[n — k] = 3[n]

h'™[0] 4 ah'™[—k] = 1]

e For the causal system
h™[0] =1

e Which mean$i™[n] is nonzero only for positive multiples &f

h'™[n] = —ah™[n—K]
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8

h™n) = S (—a)P3[n— pK]
p=0

Unsolved ex. 2.58(a)
Identify the natural response for the systefy(t) +10y(t) = 2x(t), y(0~) =
1,x(t) = u(t)

er+10=0andr =—-10

yn(t) = cre™ 1
y0 )=1=c
Yn(t) = e 19

Unsolved ex. 2.58(c)
Identify the natural response for the systelging'y(t) + 6%y(t) + 8y(t) =

2X(t), y(07) = =1, §Y(t)k—o- = Lx(t) = e "u(t)
o yn(t) = cie~*u(t) + coe2u(t)
yo )=—-1l=ca+c and%y(t)]tzof =1=—-4¢c;—2c

w

1

andc; = 5,60 = —5
_ 1.4t 3.2t

Yn(t) = 567 — e

Unsolved ex. 2.59

e Find the output of the system described by the differenca@sauwith
input and initial conditiony[n] — %y[n — 1] = 2x[n],y[-1] = 3,x[n] =
(—32)"uln]

e Solution: Natural response> 0

1 1
r 2_O iand y\'"[n] =c(%)
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e Particular solution

7
—=1+4c
5 +
o5
2
e We getk=1
1 51

Unsolved example 2.65(a)
e Find the difference equation for the system

e fIn]= —2y[n]+x(n},y[n] = f[n—1] +2f[n] y[n| = —2y[n— 1] +x[n -
1] — 4y[n| + 2x[n] 5y[n] + 2y[n — 1] = x[n — 1] + 2X]n|

Unsolved example 2.65(b)
¢ Find the difference equation for the system
o f[n]=y[n]+xn—1],  y[n=fln-1=yn-1+xn-2]

Unsolved example 2.65(c)
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Figure 1.87: Unsolved example 2.65(a)
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Figure 1.88: Unsolved example 2.65(b)
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Figure 1.89: Unsolved example 2.65(c)
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¢ Find the difference equation for the system

o fIn]=xn]—(1/8)y[n],y[n] =x[n—1]+ f[n—2]y|n|+(1/8)y[n—2] =
X[n—1] +x[n—2]

Conclusions

e Unit I: Introduction

e Units Il and Ill: Time domain Analysis
e Units IV, V, VI: Fourier representation

e Units VII, VIII: Z-domain Analysis
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