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Chapter 1

Introduction

This course material on signals and systmes is a part of VTU-edusat program. The course

has been carried out by three faculty from different engineering colleges across the state.

We divided the course into three parts as given:

• Part 1 by Dr.B.Kanmani, BMSCE, Bangalorelore (Coordinator)

– Unit I: Introduction

– Units II and III: Time domain Analysis (partial)

• Part 2 by Dr.R.Krupa, KLE, Belgaum

– Units IV, V, VI: Fourier representation

• Part 3 by Dr. Uma Mudenagudi, BVBCET, Hubli

– Units II and III: Time domain Analysis (partial)

– Units VII, VIII: Z-domain Analysis

In what follows, I give the summary of the 11 classes carried during 11 April 2009 to

12 May 2009. The text book followed is Signals and Systems by Simon Haykin and Barry

Van Veen [2]. The other reference books used for the class include [4, 1, 3, 5]. Each section

describes one class.
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1.1 Class 1: Difference and differential equation

Outline of today’s class

• Brief review

• Difference equation

• Differential equation

• Solution to difference and differential equation

• Homogeneous and particular solution

1.1.1 Brief review

• Signals

– classification, operations elementary signals

– Fourier representations of signals and and applications

• Systems

– properties

– time domain representations, convolution, properties of impulse

response

Signals and Systems course under VTU-EDUSAT program
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Time domain representation of LTI Systems

• Impulse response: characterizes the behavior of any LTI system

• Linear constant coefficient differential or difference equation: input

output behavior

• Block diagram: as an interconnection of three elementary operations

1.1.2 Differential and difference equation

• General form of differential equation is

N

∑
k=0

ak
dk

dtk y(t) =
M

∑
k=0

bk
dk

dtk x(t) (1.1)

• General form of difference equation is

N

∑
k=0

aky[n− k] =
M

∑
k=0

bkx[n− k] (1.2)

• whereak andbk are coefficients,x(.) is input andy(.) is output and

order of differential or difference equation is(M,N)

Example of Differential equation

• Consider the RLC circuit as shown in Figure 1.1. Letx(t) be the input

voltage source andy(t) be the output current. Then summing up the

voltage drops around the loop gives

Ry(t)+L
d
dt

y(t)+
1
C

Z t

−∞
y(τ)dτ = x(t)

Signals and Systems course under VTU-EDUSAT program
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Figure 1.1: RLC circuit

Difference equation

• A wide variety of discrete-time systems are described by linear differ-

ence equations:

y[n]+
N

∑
k=1

aky[n− k] =
M

∑
k=0

bkx[n− k], n = 0,1,2, . . .

where the coefficientsa1, . . . ,aN andb0, . . . ,bM do not depend onn. In

order to be able to compute the system output, we also need to specify

the initial conditions (ICs)y[−1],y[−2] . . .y[−N]

• Systems of this kind are

– linear time-invariant (LTI): easy to verify by inspection

– causal: the output at timen depends only on past outputsy[n−
1], . . . ,y[n−N] and on current and past inputsx[n],x[n−1], . . . ,x[n−
M]

• Systems of this kind are also called Auto Regressive Moving-Average

(ARMA) filters. The name comes from considering two special cases.

Signals and Systems course under VTU-EDUSAT program
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• auto regressive (AR) filter of orderN, AR(N): b0 = . . . = bM = 0

y[n]+
N

∑
k=1

aky[n− k] = 0 n = 0,1,2, . . .

In the AR case, the system output at timen is a linear combination of

N past outputs; need to specify the ICsy[−1], . . . ,y[−N].

• moving-average (MA) filter of orderN,AR(N) : a0 = . . . = aN = 0

y[n] =
M

∑
k=0

bkx[n− k] n = 0,1,2, . . .

In the MA case, the system output at timen is a linear combination of

the current input andM past inputs; no need to specify ICs.

• An ARMA(N, M ) filter is a combination of both.

• Let us first rearrange the system equation:

y[n] =−
N

∑
k=1

aky[n− k]+
M

∑
k=0

bkx[n− k] n = 0,1,2, . . .

• at n = 0

y[0] =−
N

∑
k=1

aky[−k]

︸ ︷︷ ︸

depends on ICs

+
M

∑
k=0

bkx[−k]

︸ ︷︷ ︸

depends on input x[0]→x[−M]

• at n = 1

y[1] =
N

∑
k=1

aky[1− k]+
M

∑
k=0

bkx[1− k]

Signals and Systems course under VTU-EDUSAT program
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After rearranging

y[1] =−a1y[0]−
N−1

∑
k=1

ak+1y[−k]

︸ ︷︷ ︸

depends on ICs

+
M

∑
k=0

bkx[1− k]

︸ ︷︷ ︸

depends on inputx[1]...x[1−M]

• at n = 2

y[2] =
N

∑
k=1

aky[2− k]+
M

∑
k=0

bkx[2− k]

After rearranging

y[2] =−a1y[1]−a2y[0]−
N−1

∑
k=1

ak+1y[−k]

︸ ︷︷ ︸

depends on ICs

+
M

∑
k=0

bkx[1− k]

︸ ︷︷ ︸

depends on input x[2]...x[2−M]

Implementation complexity

• In general, to compute the output of anARMA(N,M) filter at timen,

we need the outputs at timesn− 1,n− 2, . . . ,n−N and the inputs at

timesn,n−1, . . . ,n−M

• memory: at any time, need to storeN output values andM + 1 input

values, for a total ofN +M +1 values

• operations: at any timen, wee needN + M additions andN + M + 1

multiplications, for a total of 2(N +M)+1 operations to computey[n]

• Computational complexity is proportional toL = N + M and is inde-

pendent ofn

Example of Differential equation

Signals and Systems course under VTU-EDUSAT program
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• For a series RLC circuit with voltage sourcex(t) and output current

around the loop,y(t) is

Ry(t)+L
d
dt

y(t)+
1
C

Z t

−∞
y(τ)dτ = x(t)

• Differentiating witht gives

1
C

y(t)+R
d
dt

y(t)+L
d2

dt2y(t) =
d
dt

x(t)

• This is second order differential equation indicating two energy storage

devices (cap and inductor)

Example of Difference equation

• An example of II order difference equation is

y[n]+ y[n−1]+
1
4

y[n−2] = x[n]+2x[n−1]

• Memory in discrete system is analogous to energy storage in continu-

ous system

• Number of initial conditions required to determine output is equal to

maximum memory of the system

Initial conditions

• Initial conditions summarize all the information about thesystems past

that is needed to determine the future outputs

Signals and Systems course under VTU-EDUSAT program
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• In discrete case, for anNth order system theN initial value are

y[−N],y[−N +1], . . . ,y[−1]

• The initial conditions forNth-order differential equation are the values

of the firstN derivatives of the output

y(t)|t=0,
d
dt

y(t)|t=0,
d2

dt2y(t)|t=0, . . .
dN−1

dtN−1y(t)|t=0

Solving difference equation

• Consider an example of difference equationy[n]+ay[n−1] = x[n], n =

0,1,2. . . with y[−1] = 0 Then

y[0] = −ay[−1]+ x[0]

y[1] = −ay[0]+ x[1]

= −a(−ay[−1]+ x[0])+ x[1]

= a2y[−1]−ax[0])+ x[1]

y[2] = −ay[1]+ x[2]

= −a(−a2y[−1]−ax[0]+ x[1])+ x[2]

= a3y[−1]+a2x[0]−ax[1]+ x[2]

and so on

• We gety[n] as a sum of two terms:

y[n] = (−a)n+1y[−1]+∑n
i=0(−a)n−ix[i], n = 0,1,2, . . .

• First term(−a)n+1y[−1] depends on IC’s but not on input
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• Second term∑n
i=0(−a)n−ix[i] depends only on the input, but not on the

IC’s

• This is true for any ARMA (auto regressive moving average) system:

the system output at timen is a sum of the AR-only and the MA-only

outputs at timen.

• Consider an ARMA (N,M) systemy[n] =−∑N
i=1aiy[n− i]+∑M

i=0bix[n−
i], n = 0,1,2, . . . with the initial conditionsy[−1], . . . ,y[−N].

• Output at timen is:

y[n] = yh[n]+ yp[n]

whereyh[n] andyp[n] are homogeneous and particular solutions

• First term depends on IC’s but not on input

• Second term depends only on the input, but not on the IC’s

• Note thatyh[n] is the output of the system determined by the ICs only

(setting the input to zero), whileyp[n] is the output of the system de-

termined by the input only (setting the ICs to zero).

• yh[n] is often called the zero-input response (ZIR) usually referred as

homogeneous solution of the filter (referring to the fact that it is deter-

mined by the ICs only)

• yp[n] is called the zero-state response (ZSR) usually referred aspartic-

ular solution of the filter (referring to the fact that it is determined by

the input only, with the ICs set to zero).
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Figure 1.2: Step response

• Consider the output decompositiony[n] = yh[n] + yp[n] of an ARMA

(N,M) filter

y[n] =−
N

∑
i=1

aiy[n− i]+
M

∑
i=0

bix[n− i], n = 0,1,2, . . .

with the ICsy[−1], ...,y[−N].

• The output of an ARMA filter at timen is the sum of the ZIR and the

ZSR at timen.

Example of difference equation

• example: A system is described byy[n]−1.143y[n−1]+0.4128y[n−
2] = 0.0675x[n]+0.1349x[n−1]+0.675x[n−2]

• Rewrite the equation asy[n] = 1.143y[n−1]−0.4128y[n−2]+0.0675x[n]+

0.1349x[n−1]+0.675x[n−2]
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Figure 1.3: Initial condition

Figure 1.4: Due to inputx[n] = cos( 1
10πn)

Figure 1.5: Due to inputx[n] = cos(1
5πn)
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Figure 1.6: Due to inputx[n] = cos( 7
10πn)

Solving differential equation

• We will switch to continuous-time systems. A wide variety ofcontinuous-

time systems are described the linear differential equations:

N

∑
k=0

ak
dk

dtk y(t) =
M

∑
k=0

bk
dk

dtk x(t) (1.3)

• Just as before, in order to solve the equation fory(t), we need the

ICs. In this case, the ICs are given by specifying the value ofy and

its derivatives 1 throughN − 1 at t = 0− (time ”just before”t = 0):

y(0−),y(1)(0−), ...,y(N−1)(0−). wherey(i)(t) denotes theith derivative

of y(t), andy(0)(t) = y(t).

• Note: the ICs are given att = 0− to allow for impulses and other dis-

continuities att = 0.

• Systems described in this way are

• linear time-invariant (LTI): easy to verify by inspection
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• causal: the value of the output at time t depends only on the output and

the input at times 0≤ τ≤ t

• As in the case of discrete-time system, the solutiony(t) can be decom-

posed intoy(t) = yh(t)+ yp(t)

where homogeneous solution or zero-input response (ZIR),yh(t) satis-

fies the equation

yN
h (t)+

N−1

∑
i=0

aiy
(i)
h (t) = 0, t ≥ 0

with the ICsy(1)(0−), . . . ,

• The zero-state response (ZSR) or particular solutionyp(t) satisfies the

equation

yN
h (t)+

N−1

∑
i=0

aiy
(i)
h (t) =

m

∑
i=0

bix
(M−i)(t), t ≥ 0

with ICs yp(0−) = y(1)
p (0−) = ... = y(N−1)

p (0−) = 0.

Homogeneous solution (ZIR) for CT

• A standard method for obtaining the homogeneous solution or(ZIR) is

by setting all terms involving the input to zero.

N

∑
i=0

aiy
(i)
h (t) = 0, t ≥ 0
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and homogeneous solution is of the form

yh(t) =
N

∑
i=1

Cie
rit

whereri are theN roots of the system’s characteristic equation

N

∑
k=0

akrk = 0

andC1, . . . ,CN are solved using ICs.

Homogeneous solution (ZIR) for DT

• The solution of the homogeneous equation

N

∑
k=0

akyh[n− k] = 0

is

yh[n] =
N

∑
i=1

cir
n
i

whereri are theN roots of the system’s characteristic equation

N

∑
k=0

akrN−k = 0

andC1, . . . ,CN are solved using ICs.

Example 1 (ZIR)

• Solution of

d2

dt2y(t)+5
d
dt

y(t)+6y(t) = 2x(t)+
d
dt

x(t)
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is

yh(t) = c1e−3t + c2e−2t

• Solution ofy[n]−9/16y[n−2] = x[n−1] is yh[n] = c1(3/4)n+c2(−3/4)n

Example 2 (ZIR)

• Consider the first order recursive system described by the difference

equationy[n]−ρy[n−1] = x[n], find the homogeneous solution.

• The homogeneous equation (by setting input to zero) isy[n]−ρy[n−
1] = 0.

• The homogeneous solution forN = 1 is yh[n] = c1rn
1.

• r1 is obtained from the characteristics equationr1−ρ = 0, hencer1 = ρ

• The homogeneous solution isyh[n] = c1ρn

Example 3 (ZIR)

• Consider the RC circuit described byy(t)+RC d
dt y(t) = x(t)

• The homogeneous equation isy(t)+RC d
dt y(t) = 0

• Then the homogeneous solution is

yh(t) = c1er1t

wherer1 is the root of characteristic equation 1+RCr1 = 0

• This givesr1 =− 1
RC
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• The homogeneous solution is

yh(t) = c1e
−t
RC

Particular solution (ZSR)

• Particular solution or ZSR represents solution of the differential or dif-

ference equation for the given input.

• To obtain the particular solution or ZSR, one would have to use the

method of integrating factors.

• yp is not unique.

• Usually it is obtained by assuming an output of the same general form

as the input.

• If x[n] = αn then assumeyp[n] = cαn and find the constantc so that

yp[n] is the solution of given equation

1.1.3 Examples

Example 1 (ZSR)

• Consider the first order recursive system described by the difference

equationy[n]−ρy[n−1] = x[n], find the particular solution whenx[n] =

(1/2)n.

• Assume a particular solution of the formyp[n] = cp(1/2)n.

• Put the values ofyp[n] andx[n] in the equation then we getcp(
1
2)

n−
ρcp(

1
2)

n−1 = (1
2)

n
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• Multiply both the sides of the equation by(1/2)n we getcp = 1/(1−
2ρ).

• Then the particular solution is

yp[n] =
1

1−2ρ
(
1
2
)n

• For ρ = (1/2) particular solution has the same form as the homoge-

neous solution

• However no coefficientcp satisfies this condition and we must assume

a particular solution of the formyp[n] = cpn(1/2)n.

• Substituting this in the difference equation givescpn(1−2ρ)+2ρcp =

1

• Usingρ = (1/2) we find thatcp = 1.

Example 2 (ZSR)

• Consider the RC circuit described byy(t)+RC d
dt y(t) = x(t)

• Assume a particular solution of the formyp(t)= c1cos(ω0t)+c2sin(ω0t).

• Replacingy(t) by yp(t) andx(t) by cos(ω0t) gives

c1cos(ω0t)+c2sin(ω0t)−RCω0c1sin(ω0t)+RCω0c2cos(ω0t)= cos(ω0t)

• The coefficientsc1 andc2 are obtained by separately equating the co-

efficients of cos(ω0t) and sin(ω0t), gives

c1 =
1

1+(RCω0)2 and c2 =
RCω0

1+(RCω0)2
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• Then the particular solution is

yp(t) =
1

1+(RCω0)2 cos(ω0t)+
RCω0

1+(RCω0)2 sin(ω0t)

Complete solution

• Find the form of the homogeneous solutionyh from the roots of the

characteristic equation

• Find a particular solutionyp by assuming that it is of the same form as

the input, yet is independent of all terms in the homogeneoussolution

• Determine the coefficients in the homogeneous solution so that the

complete solutiony = yh + yp satisfies the initial conditions

1.1.4 Unsolved example from [2]

Unsolved ex. 2.53

Determine the homogeneous solution of the system describedby the differ-

ential equation

• (a) 5d
dt y(t)+10y(t) = 2x(t)

Solution is

5r +10= 0

r =−2

yh(t) = c1e−2t

• (b) d2

dt2y(t)+6 d
dt y(t)+8y(t) = d

dt x(t)

Solution is
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r2+6r +8 = 0

r =−4,−2 andyh(t) = c1e−4t + c2e−2t

Unsolved ex. 2.53

Determine the homogeneous solution of the system describedby the differ-

ential equation

• (c) d2

dt2y(t)+4y(t) = 3 d
dt x(t)

Solution is

r2+4 = 0

r =±2 j

yh(t) = c1e−2 jt + c2e2 jt

• (d) d2

dt2y(t)+2 d
dt y(t)+2y(t) = x(t)

Solution is

r2+2r +2 = 0

r =−1± j

yh(t) = c1e(−1+ j)t + c2e(−1−J)t

• (e) d2

dt2y(t)+2 d
dt y(t)+ y(t) = d

dt x(t)

Solution is

r2+2r +1 = 0

r =±1

yh(t) = c1e−t + c2tet

Unsolved ex. 2.54

Determine the homogeneous solution of the system describedby the differ-

ence equation
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• (a) y[n]−αy[n−1] = 2x[n]

Solution is

r−α = 0

yh[n] = c1αn

• (b) y[n]− (1/4)y[n−1]− (1/8)y[n−2] = x[n]+ x[n−1]

Solution is

r2− (1/4)r− (1/8) = 0

r = (1/2),(1/4) andyh[n] = c1(
1
2)

n + c2(
1
4)

n

Unsolved ex. 2.54

Determine the homogeneous solution of the system describedby the differ-

ence equation

• (c) y[n]− (9/16)y[n−2] = x[n−1]

Solution is

r2+9/16= 0

r =± j3
4

yh[n] = c1( j3
4)

n + c2(− j3
4)

n

• (d) y[n]+ y[n−1]− (1/4)y[n−2] = x[n]+2x[n−1]

Solution is

r2+ r +1/4 = 0

r =−1
2,−1

2 andyh[n] = c1(−1
2)

n + c2n(1
2)

n

Unsolved ex. 2.55

Determine the particular solution of the system described by the differential
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equation

• (a) 5d
dt y(t)+10y(t) = 2x(t) and (i)x(t) = 2

Solution is

yp(t) = k

10k = 2∗2

k = 2/5

yp(t) = 2/5

• (a) 5d
dt y(t)+10y(t) = 2x(t) and (ii) x(t) = e−t

Solution is

yp(t) = ke−t

−5ke−t +10ke−t = 2e−t

k = 2/5

yp(t) = 2/5e−t

Unsolved ex. 2.55

Determine the particular solution of the system described by the differential

equation

• (a) 5d
dt y(t)+10y(t) = 2x(t) and (iii) x(t) = cos(3t)

Solution is

yp(t) = Acos(3t)+Bsin(3t)
d
dt yp(t) =−3Asin(3t)+3Bcos(3t)

5(−3Asin(3t)+3Bcos(3t))+10Acos(3t)+10Bsin(3t) = 2cos(3t)

−15A+10B = 0
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10A+15B = 2

A = 4/65

B = 6/65

yp(t) = (4/65)cos(3t)+(6/65)sin(3t)

• (b) d2

dt2y(t)+4y(t) = 3 d
dt x(t) and (i)x(t) = t

Solution is

yp(t) = k1t + k2

4k1t +4k2 = 3

k1 = 0 andk2 = 3/4

yp(t) = 3/4

Unsolved ex. 2.56

Determine the particular solution of the system described by the difference

equation

• (a) y[n]− (2/5)y[n−1] = 2x[n] and (i)x[n] = 2u[n]

Solution is

yp[n] = ku[n]

k = (2/5)k = 4 andk = 20/3

yp[n] = (20/3)u[n]

• (a) y[n]− (2/5)y[n−1] = 2x[n] and (ii) x[n] =−(1/2)nu[n]

Solution is

yp[n] = k(1/2)nu[n]

k(1/2)n− (2/5)(1/2)nk =−2(1/2)n andk =−10

yp[n] =−10(1/2)nu[n]

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 23

Unsolved ex. 2.57

Determine the output of the systems described by the following differential

equations with input and initial conditions as specified:

• (a) d
dt y(t)+10y(t) = 2x(t), y(0−) = 1, x(t) = u(t)

Solution is

t ≥ 0 natural: characteristic equation

r +10= 0 andr =−10

yh(t) = ce−10t

Particular solution:yp(t) = ku(t) = (1/5)u(t)

y(t) = (1/5)+ ce−10t

y(0−) = 1 = (1/5)+ c, c = (4/5)

k1 = 0 andk2 = 3/4

y(t) = (1/5)(1+4e−10t)u(t)

Unsolved ex. 2.57

Determine the output of the systems described by the following difference

equations with input and initial conditions as specified:

• (a) y[n]− (1/2)y[n−1] = 2x[n], y[−1] = 3, x[n] = (−1/2)nu[n]

Solution is

Homogeneous solution:n≥ 0, r− (1/2) = 0, yp[n] = c(1/2)n

Particular solution:yp[n] = k−1/2)nu[n]

k(−1/2)n− (1/2)k(−1/2)n−1 = 2(−1/2)n andk = 1

yp[n] = (−1/2)nu[n]

Initial conditions:y[n] = (1/2)y[n−1]+2x[n]
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y[0] = (1/2)(3)+2 = 7/2

Total solution:y[n] = (−1/2)nu[n]+ c(1/2)nu[n]

7/2 = 1+ c andc = 5/2

y[n] = (−1/2)nu[n]+ (5/2)(1/2)nu[n]

Example 1

• Find the solution of the first order recursive system described by the

difference equationy[n]− (1/4)y[n−1] = x[n] if x[n] = (1/2)nu[n] and

the initial condition isy[−1] = 8.

• y[n] = yh[n]+ yp[n] (same example withρ = 1/4)

• y[n] = 2(1
2)

n + c1(
1
4)

n, f or n≥ 0)

• Coefficientc1 is obtained from the initial conditions. First translate the

initial condition to timen = 0 by rewriting equation in recursive form

and putn = 0, which gives

• y[0] = x[0]+ (1/4)y[−1], which implies thaty[0] = 1+(1/4)∗8 = 3,

putting y[0] = 3 in they[n] equation gives 3= 2(1
2)

0 + c1(
1
4)

0, which

givesc1 = 1

• The complete solution isy[n] == 2(1
2)

n + c1(
1
4)

n f or n≥ 0,

Example 2

• Find the response of the RC circuit described byy(t)+RC d
dt y(t) = x(t),

to an inputx(t) = cos(t)u(t). AssumeR = 1Ω andC = 1F and initial

voltage across the capacitor isy(0−) = 2V
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• The homogeneous solution isyh(t) = ce−
t

RC

• The particular solution is (withω0 = 1)

yp(t) =
1

1+(RC)2 cos(t)+
RC

1+(RC)2 sin(t)

• The complete solution is (assume withω0 = 1, R = 1 andC = 1F)

y(t) = ce−t +
1
2

cos(t)+
1
2

sin(t) t > 0

Conclusions

• Difference equation and differential equation

• Solution to difference equation and differential equation

• Homogeneous solution (ZIR) is due to initial conditions of the system

and does not depend on the input

• Particular solution (ZSR) is due to input when initial conditions of the

system are set to zero

• Total solution is a combination of homogeneous solution (ZIR) and

particular solution (ZSR)
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1.2 Class 2: System representations

Outline of today’s class

• Characteristics of a system described by difference and differential sys-

tem

• Block diagram representations

• Block diagram implementation of given systems representedby differ-

ence and differential equations

1.2.1 Characteristics

• Differential/difference equation consists of two terms

1. Associated with the initial conditions: natural response

2. Associated with only the input signal: forced response

• The complete output is:y = yn + y f

Natural response

• This is the system response when the input is zero

• Deals with

1. dissipation of any stored energy

2. memory of the past represented by the past inputs

• Since input is zero, the response can be obtained by homogeneous so-

lution by choosing the coefficients so that the initial conditions are

satisfied
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• The natural response is determined without translating initial condi-

tions forward in time

Ex 1: Natural response

• Consider the RC circuit described byy(t)+ RC d
dt y(t) = x(t), find the

natural response of this system assumingy(0) = 2 V,R = 1Ω andC =

1F.

• The homogeneous solution isyh(t) = c1e
−t
RC = c1e−t V

• The natural response is obtained by choosingc1 so that the initial con-

dition y(0) = 2 is satisfied.

• The initial condition implies thatc1 = 2

• Hence, the natural response isyh(t) = 2e−t V f or t ≥ 0

Ex 2: Natural response

• Consider the first order recursive system described by the difference

equationy[n]− 1
4y[n−1] = x[n], find the natural response with ICy[−1] =

8.

• The homogeneous solution forN = 1 is yh[n] = c1(
1
4)

n.

• Satisfaction of the ICy[−1] = 8 gives 8= c1(
1
4)
−1, which givesc1 = 2

• Hence the natural response isyn[n] = 2(1
4)

n, n≥−1

Unsolved ex. 2.58(a)

Identify the natural response for the system:d
dt y(t)+10y(t)= 2x(t), y(0−)=

1, x(t) = u(t)
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• r +10= 0 andr =−10

yn(t) = c1e−10t

y(0−) = 1 = c1

yn(t) = e−10t

Unsolved ex. 2.58(c)

Identify the natural response for the system:d2

dt2y(t) + 6 d
dt y(t) + 8y(t) =

2x(t), y(0−) =−1, d
dt y(t)|t=0− = 1,x(t) = e−tu(t)

• yn(t) = c1e−4tu(t)+ c2e−2tu(t)

y(0−) =−1 = c1+ c2 and d
dt y(t)|t=0− = 1 =−4c1−2c2

andc1 = 1
2,c2 =−3

2

yn(t) = 1
2e−4t− 3

2e−2t

Forced response

• System response due to input signal assuming zero ICs

• Forced response is similar to complete solution with zero ICs; (i) sys-

tem isat rest and (ii) no stored energy or memory

• Since the ICs are zero, the response is forced by the input signal when

the system is at rest

• The forced response depend on particular solution, which isvalid only

for timest > 0 andn≥ 0

• This means, theat rest conditions for discrete time systemy[−N] =

0, . . ., must be translated forward to timesn = 0,1,2. . . to solve the

undetermined coefficients.
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Ex 1: Forced response

• Consider the first order recursive system described by the difference

equationy[n]− 1
4y[n− 1] = x[n], find the forced response ifx[n] =

(1
2)

nu[n].

• The complete solution is of the formy[n] = 2(1
2)

n + c1(
1
4)

n, n≥ 0.

• The forced response is obtained by choosingc1 so that the initial con-

dition y(−1) = 0 is satisfied.

• The initial condition implies thaty(0) = x[0] + 1
4y[−n], y[0] = 1, and

c1 =−1

• Hence, the forced response isy f [n] = 2(1
2)

n− (1
4)

n, n≥ 0

Ex 2: Forced response

Identify the forced response for the system:RC d
dt y(t)+ y(t) = x(t), R = 1,

C = 1, x(t) = costu(t)

• y f (t) = ce−t + 1
2 cost + 1

2 sint, t > 0 y(0−) = y(0+) = 0 andc =−1
2

y f (t) =−1
2e−t + 1

2 cost + 1
2 sint

1.2.2 Unsolved examples from [2]

Unsolved ex. 2.58(a)

Identify the forced response for the system:d
dt y(t)+10y(t) = 2x(t), y(0−) =

1, x(t) = u(t)

• y f (t) = 1
5 + ke−10t

y(0) = 0 = 1
5 + k
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andk =−1
5

y f (t) = 1
5− 1

5e−10t

Unsolved ex. 2.58(c)

Identify the forced response for the system:d2

dt2y(t) + 6 d
dt y(t) + 8y(t) =

2x(t), y(0−) =−1, d
dt y(t)|t=0− = 1,x(t) = e−tu(t)

• y f (t) = 2
3e−tu(t)+ c1e−4tu(t)+ c2e−2tu(t) y(0) = 0 = 2

3 + c1+ c2 and
d
dt y(t)|t=0− = 1= 2

3−4c1−2c2 andc1 = 1
3,c2 =−1 y f (t) = 2

3e−tu(t)+
1
3e−4tu(t)− e−2tu(t)

Unsolved ex. 2.60(a)

Identify the forced response for the system:y[n]− 1
2y[n−1] = 2x[n],y[−1] =

3,x[n] = (−1
2)

nu[n]

• y f [n] = k(1
2)

n +(−1
2)

n, Translate ICs

y[n] = 1
2y[n−1]+2x[n] y[0] = (1

2)(0)+2= 2= k+1 andk = 1 y f [n] =

(1
2)

n +(−1
2)

n
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Impulse response

• Solution to differential/difference equation can be used to find the im-

pulse response

• The response to a systemat rest is equivalent to step response of the

system with zero ICs

• The impulse and step response are related byh(t) = d
dt s(t) andh[n] =

s[n]− s[n−1], whereh(.) is the impulse response ands(.) is the step

response

• Impulse response in obtained by differentiating/differencing the step

response

• No initial conditions for impulse response description

• Differential/difference equation representation is moreflexible

Linearity and time invariance (TI)

• The forced response of an LTI system described by differential/difference

equation is linear with respect to inputs

• Linear: Homogeneity and super position

• If x1→ y f
1 andx2→ y f

2 thenα1x1+α2x2→ α1y f
1 +α2y f

2

• Forced response is also causal: since the system is initially at rest

• Similarly, the natural response is linear: Ifyn
1 andyn

2 are two natural

responses associated with ICsI1 andI2 thenα1I1+α2I2→α1yn
1+α2yn

2
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• In general the response of an LTI system described by difference/differential

equation is not time invariant, since the ICs will result in an output that

does not shift with a time shift of the input

Roots of the characteristic eqn

• The forced response depends on both the input and the roots ofthe

characteristic equation. It involves both homogeneous andparticular

solution.

• Basic form of the natural response is dependent entirely on the roots of

the characteristic equation.

• Impulse response of an LTI system also depends on the roots ofchar-

acteristic equation.

• Characteristic equation has considerable information about system be-

havior

• Stability of an LTI system are directly related to the roots:Output

bounded for any set of ICs with zero input

• BI BO stability: each term of the natural response of system must be

bounded

• LTI system is stable

– Discrete case:|rn
i |< 1,∀i

– Continuous case:|erit| bounded, ie.Re{ri}< 0,

– System is on the verge of instability: if|ri|= 1 or if Re{ri}= 0
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• LTI system is unstable

– If any root of the characteristic equation has magnitude more than

unity in discrete case

– If the real part of any root of the characteristic equation ispositive.

• The roots of characteristic eqn acts as indicators of the system behavior

• Stability condition states that natural response of an LTI system goes

to zero as time approaches to infinity, since each term is decaying

• When natural response tends to zero then the system responseshould

be zero for zero input when all the stored energy is dissipated

• Reinforces the LTI system behavior for zero input

• Response is also determined by the roots of the characteristic equation

• The characteristic equation is very important in both natural and forced

response

• Once the natural response has decayed to zero, the system behavior is

governed by the particular solution (input)

• The natural response describes the transient behavior of the system,

used to find the time taken by the system to respond to a transient, is

time it takes for natural response to decay to zero

• The natural response containsrn
i for discrete anderit for continuous

time systems
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• Response time depends on: (i) root of the characteristic equation with

the largest magnitude in discrete case and (ii) root with largest real

component in continuous case

1.2.3 Block diagram representations

• A block diagram is an interconnection of elementary operations that

act on the input signal

• This method is more detailed representation of the system than impulse

response or differential/difference equation representations

• The impulse response and differential/difference equation descriptions

represent only the input-output behavior of a system, blockdiagram

representation describes how the operations are ordered

• Each block diagram representation describes a different set of internal

computations used to determine the system output

• Block diagram consists of three elementary operations on the signals:

– Scalar multiplication:y(t) = cx(t) or y[n] = x[n], wherec is a

scalar

– Addition: y(t) = x(t)+w(t) or y[n] = x[n]+w[n].

• Block diagram consists of three elementary operations on the signals:

– Integration for continuous time LTI system:y(t) =
R t
−∞ x(τ)dτ

Time shift for discrete time LTI system:y[n] = x[n−1]

• Scalar multiplication:y(t) = cx(t) or y[n] = x[n], wherec is a scalar
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Figure 1.7: Scalar Multiplication

Figure 1.8: Addition

• Addition: y(t) = x(t)+w(t) or y[n] = x[n]+w[n]

• Integration for continuous time LTI system:y(t) =
R t
−∞ x(τ)dτ

Time shift for discrete time LTI system:y[n] = x[n−1]
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Figure 1.9: Integration and time shifting

Figure 1.10: Example 1: Direct form I

1.2.4 Examples

Example 1

• Consider the system described by the block diagram as in Figure 1.10

• Consider the part within the dashed box

• The inputx[n] is time shifted by 1 to getx[n−1] and again time shifted

by one to getx[n− 2]. The scalar multiplications are carried out and
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Figure 1.11: Example 2: Direct form I

they are added to getw[n] and is given by

w[n] = b0x[n]+b1x[n−1]+b2x[n−2].

• Write y[n] in terms ofw[n] as inputy[n] = w[n]−a1y[n−1]−a2y[n−2]

• Put the value ofw[n] and we gety[n] =−a1y[n−1]−a2y[n−2]+b0x[n]

+b1x[n−1]+b2x[n−2]

andy[n]+a1y[n−1]+a2y[n−2] = b0x[n]+b1x[n−1]+b2x[n−2]

• The block diagram represents an LTI system

Example 2

• Consider the system described by the block diagram and its difference

equation isy[n]+ (1/2)y[n−1]− (1/3)y[n−3] = x[n]+2x[n−2]

Example 3

• Consider the system described by the block diagram and its difference

equation isy[n]+ (1/2)y[n−1]+ (1/4)y[n−2] = x[n−1]
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Figure 1.12: Example 3: Direct form I

Example 1 contd..

• Block diagram representation is not unique, direct form II structure of

Example 1

• We can change the order without changing the input output behavior

Let the output of a new system bef [n] and given inputx[n] are related

by

f [n] =−a1 f [n−1]−a2 f [n−2]+ x[n]

• The signal f [n] acts as an input to the second system and output of

second system is

y[n] = b0 f [n]+b1 f [n−1]+b2 f [n−2].

• The block diagram representation of an LTI system is not unique

1.2.5 Unsolved examples from [2]
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Figure 1.13: Example 1: Direct form II

Unsolved example 2.65(a)

• Find the difference equation for the system

• f [n] =−2y[n]+ x[n],y[n] = f [n−1]+2 f [n] y[n] =−2y[n−1]+ x[n−
1]−4y[n]+2x[n] 5y[n]+2y[n−1] = x[n−1]+2x[n]

Unsolved example 2.65(b)

• Find the difference equation for the system

• f [n] = y[n]+ x[n−1], y[n] = f [n−1] = y[n−1]+ x[n−2]

Unsolved example 2.65(c)

• Find the difference equation for the system

• f [n] = x[n]−(1/8)y[n],y[n] = x[n−1]+ f [n−2] y[n]+(1/8)y[n−2] =

x[n−1]+ x[n−2]

Example 1: Direct form I
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Figure 1.14: Unsolved example 2.65(a)

Figure 1.15: Unsolved example 2.65(b)

Figure 1.16: Unsolved example 2.65(c)
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Figure 1.17: Example 1: Direct form I

• Draw the direct form I of the systemy[n]+(1/4)y[n−1]+(1/8)y[n−
2] = x[n]+ x[n−1]

Example 1: Direct form II

• Draw the direct form II of the systemy[n]+(1/4)y[n−1]+(1/8)y[n−
2] = x[n]+ x[n−1]

Unsolved ex.2.66(b): Direct form I

• Draw the direct form I if the systemy[n]+ (1/2)y[n−1]− (1/8)y[n−
2] = x[n]+2x[n−1]

Unsolved ex.2.66(b): Direct form II

• Draw the direct form II of the systemy[n]+(1/2)y[n−1]−(1/8)y[n−
2] = x[n]+2x[n−1]

Unsolved ex.2.66(c): Direct form I

• Draw the direct form I of the systemy[n]+(1/2)y[n−1]− (1/8)y[n−
2] = x[n]+2x[n−1]

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 42

Figure 1.18: Example 1: Direct form II

Figure 1.19: Unsolved example 2.66(b), direct form I
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Figure 1.20: Unsolved example 2.66(b), direct form II

Figure 1.21: Unsolved example 2.66(c), direct form I
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Figure 1.22: Unsolved example 2.66(c), direct form II

Unsolved ex.2.66(c): Direct form II

• Draw the direct form II of the systemy[n]+(1/2)y[n−1]−(1/8)y[n−
2] = x[n]+2x[n−1]

Unsolved ex.2.66(d): Direct form I

• Draw the direct form I of the systemy[n]+(1/2)y[n−1]− (1/8)y[n−
2] = x[n]+2x[n−1]

Unsolved ex.2.66(d): Direct form II

• Draw the direct form II of the systemy[n]+(1/2)y[n−1]−(1/8)y[n−
2] = x[n]+2x[n−1]
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Figure 1.23: Unsolved example 2.66(d), direct form I

Figure 1.24: Unsolved example 2.66(d), direct form II
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Continuous time

• Rewrite the differential equation

N

∑
k=0

ak
dk

dtk y(t) =
M

∑
k=0

bk
dk

dtk x(t)

as an integral equation. Letv(0)(t) = v(t) be an arbitrary signal, and

set

v(n)(t) =

Z t

−∞
v(n−1)(τ)dτ, n = 1,2,3, . . .

wherev(n)(t) is then-fold integral ofv(t) with respect to time

• Rewrite in terms of an initial condition on the integrator as

v(n)(t) =

Z t

0
v(n−1)(τ)dτ+ v(n)(0), n = 1,2,3, . . .

• If we assume zero ICs, then differentiation and integrationare inverse

operations, ie.

d
dt

v(n)(t) = v(n−1)(t), t > 0 and n = 1,2,3, . . .

• Thus, if N ≥M and integrateN times, we get the integral description

of the system

∑k = 0Naky(N−k)(t) = ∑k = 0Mbkx(N−k)(t)

• For second order system witha0 = 1, the differential equation can be

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 47

Figure 1.25: Direct form I

written as

y(t) =−a1y(1)(t)−a0y(2)(t)+b2x(t)+a1x(1)(t)+b0x(2)(t)

continuous time Direct form I continuous time Direct form II

Unsolved ex.2.67(b): Direct form I

• Draw the direct form I of the systemd
2

dt2y(t)+5 d
dt y(t)+4y(t) = d

dt x(t)

Unsolved ex.2.67(b): Direct form II

• Draw the direct form II of the systemd
2

dt2y(t)+5 d
dt y(t)+4y(t) = d

dt x(t)

Unsolved ex.2.67(c): Direct form I

• Draw the direct form I of the systemd
2

dt2y(t)+ y(t) = 3 d
dt x(t)
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Figure 1.26: Direct form II

Figure 1.27: Unsolved example 2.67(b), direct form I
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Figure 1.28: Unsolved example 2.67(b), direct form II

Figure 1.29: Unsolved example 2.67(c), direct form I
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Figure 1.30: Unsolved example 2.67(c), direct form II

Unsolved ex.2.67(c): Direct form II

• Draw the direct form II of the systemd2

dt2y(t)+ y(t) = 3 d
dt x(t)

Extra problems: Natural response

• y(0) = 3, d
dt y(t)|t=0 =−7: d2

dt2y(t)+5 d
dt y(t)+6y(t) = 2x(t)+ d

dt x(t)

• y(0) = 0, d
dt y(t)|t=0 =−1: d2

dt2y(t)+3 d
dt y(t)+2y(t) = x(t)+ d

dt x(t)

• y[−1] = 4
3,y[−2] = 16

3 : y[n]− ( 9
16y[n−2] = x[n−1]

• y[0] = 2,y[1] = 0: y[n]+ 1
4y[n−2] = x[n]+2x[n−2]
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Conclusions

• Characteristics of a system described by difference and differential sys-

tem: responses, roots of characteristic equation and linearity and time

invariance

• Block diagram representations of systems

• Block diagram implementation of given systems representedby differ-

ence and differential equations
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1.3 Class 3:z-Transform

Outline of today’s class

• Introduction toz-transform

• Thez-plane

• Thez-transform

• Convergence

• Poles and zeros

1.3.1 Introduction to z-transform

The z-transform is a transform for sequences. Just like the Laplace trans-

form takes a function oft and replaces it with another function of an aux-

iliary variables. The z-transform takes a sequence and replaces it with a

function of an auxiliary variable,z. The reason for doing this is that it

makes difference equations easier to solve, again, this is very like what hap-

pens with the Laplace transform, where taking the Laplace transform makes

it easier to solve differential equations. A difference equation is an equation

which tells you what thek+2th term in a sequence is in terms of thek+1th

andkth terms, for example. Difference equations arise in numerical treat-

ments of differential equations, in discrete time samplingand when studying

systems that are intrinsically discrete, such as population models in ecology

and epidemiology and mathematical modelling of mylinated nerves.

• Generalizes the complex sinusoidal representations of DTFT to more

generalized representation using complex exponential signals
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• It is the discrete time counterpart of Laplace transform

The z-Plane

• Complex numberz = re jΩ is represented as a location in a complex

plane (z-plane)

The z-transform

• Let z = re jΩ be a complex number with magnituder and angleΩ.

• The signalx[n] = zn is a complex exponential andx[n] = rn cos(Ωn)+

jrn sin(Ωn)

• The real part ofx[n] is exponentially damped cosine

• The imaginary part ofx[n] is exponentially damped sine

• Apply x[n] to an LTI system with impulse responseh[n], Then

y[n] = H{x[n]}= h[n]∗ x[n]
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y[n] =
∞

∑
k=−∞

h[k]x[n− k]

• If

x[n] = zn

we get

y[n] =
∞

∑
k=−∞

h[k]zn−k

y[n] = zn
∞

∑
k=−∞

h[k]z−k

• Thez-transform is defined as

H(z) =
∞

∑
k=−∞

h[k]z−k

we may write as

H(zn) = H(z)zn

You can see that when you do thez-transform it sums up all the sequence,

and so the individual terms affect the dependence onz, but the resulting

function is just a function ofz, it has nok in it. It will become clearer later

why we might do this.

• This has the form of an eigen relation, wherezn is the eigen function

andH(z) is the eigenvalue.

• The action of an LTI system is equivalent to multiplication of the input

by the complex numberH(z).

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 56

• If H(z) = |H(z)|e jφ(z) then the system output is

y[n] = |H(z)|e jφ(z)zn

• Usingz = re jΩ we get

y[n] = |H(re jΩ)|rn cos(Ωn+φ(re jΩ)+

j|H(re jΩ)|rn sin(Ωn+φ(re jΩ)

• Rewritingx[n]

x[n] = zn = rn cos(Ωn)+ jrn sin(Ωn)

• If we comparex[n] andy[n], we see that the system modifies

– the amplitude of the input by|H(re jΩ)| and

– shifts the phase byφ(re jΩ)

DTFT and the z-transform

• Put the value ofz in the transform then we get

H(re jΩ) =
∞

∑
n=−∞

h[n](re jΩ)−n

=
∞

∑
n=−∞

(h[n]r−n)e− jΩn

• We see thatH(re jΩ) corresponds to DTFT ofh[n]r−n.

• The inverse DTFT ofH(re jΩ) must beh[n]r−n.
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• We can write

h[n]r−n =
1
2π

Z π

−π
H(re jΩ)e jΩndΩ

The z-transform contd..

• Multiplying h[n]r−n with rn gives

h[n] =
rn

2π

Z π

−π
H(re jΩ)e jΩndΩ

h[n] =
1
2π

Z π

−π
H(re jΩ)(re jΩ)ndΩ

• We can convert this equation into an integral overz by puttingre jΩ = z

• Integration is overΩ, we may considerr as a constant

• We have

dz = jre jΩdΩ = jzdΩ

dΩ =
1
j
z−1dz

• Consider limits on integral

– Ω varies from−π to π

– z traverses a circle of radiusr in a counterclockwise direction

• We can writeh[n] ash[n] = 1
2π j

H

H(z)zn−1dz

where
H

is integration around the circle of radius|z| = r in a counter

clockwise direction
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• Thez-transform of any signalx[n] is

X(z) =
∞

∑
n=−∞

x[n]z−n

• Theinverse z-transform of is

x[n] =
1

2π j

I

X(z)zn−1dz

• Inverse z-transform expressesx[n] as a weighted superposition of com-

plex exponentialszn

• The weights are( 1
2π j)X(z)z−1dz

• This requires the knowledge of complex variable theory
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Convergence

• Existence ofz-transform: exists only if∑∞
n=−∞ x[n]z−n converges

• Necessary condition: absolute summability ofx[n]z−n, since|x[n]z−n|=
|x[n]r−n|, the condition is

∞

∑
n=−∞

|x[n]r−n|< ∞

• The ranger for which the condition is satisfied is called therange of

convergence (ROC) of thez-transform

• ROC is very important in analyzing the system stability and behavior

• We may get identicalz-transform for two different signals and only

ROC differentiates the two signals

• Thez-transform exists for signals that do not have DTFT.

• existence of DTFT: absolute summability ofx[n]

• by limiting restricted values forr we can ensure thatx[n]r−n is abso-

lutely summable even thoughx[n] is not

• Consider an example: the DTFT ofx[n] = αnu[n] does not exists for

|α|> 1

• If r > α, thenr−n decays faster thanx[n] grows

• Signalx[n]r−n is absolutely summable andz-transform exists
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Figure 1.31: DTFT andz-transform

The z-Plane and DTFT

• If x[n] is absolutely summable, then DTFT is obtained from thez-

transform by settingr = 1 (z = e jΩ), ie. X(e jΩ) = X(z)|z=e jΩ as shown

in Figure??

Poles and Zeros

• Commonly encountered form of thez-transform is the ratio of two

polynomials inz−1

X(z) =
b0+b1z−1+ . . .+bMz−M

a0+a1z−1+ . . .+bNz−N

• It is useful to rewriteX(z) as product of terms involving roots of the

numerator and denominator polynomials

X(z) =
b̃∏M

k=1(1− ckz−1)

∏N
k=1(1−dkz−1)

whereb̃ = b0/a0
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Poles and Zeros contd..

• Zeros: Theck are the roots of numerator polynomials

• Poles: Thedk are the roots of denominator polynomials

• Locations of zeros and poles are denoted by”©” and ”×” respectively

Example 1

• Thez-transform and DTFT ofx[n] = {1,2,−1,1} starting atn =−1

• X(z) = ∑∞
n=−∞ x[n]z−n = ∑2

n=−1x[n]z−n = z +2− z−1+ z−2

• X(e jΩ) = X(z)|z=e jΩ = e jΩ +2− e− jΩ + e− j2Ω

• Thez-transform and DTFT ofx[n] = {1,2,−1,1} starting atn =−1

• X(z) = ∑∞
n=−∞ x[n]z−n = ∑2

n=−1x[n]z−n = z +2− z−1+ z−2

• X(e jΩ) = X(z)|z=e jΩ = e jΩ +2− e− jΩ + e− j2Ω

Example 2

• Find thez-transform ofx[n] = αnu[n], Depict the ROC and the poles

and zeros

• Solution:X(z) = ∑∞
n=−∞ αnu[n]z−n = ∑∞

n=0(
α
z )n

The series converges if|z|> |α|
X(z) = 1

1−αz−1 = z
z−α, |z|> |α|.

Hence pole atz = α and a zero atz = 0

• The ROC is
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Figure 1.32: Example 2

Example 3

• Find thez-transform ofx[n] =−αnu[−n−1], Depict the ROC and the

poles and zeros

• Solution:X(z) =−∑−1
n=−∞(α

z )n =−∑∞
k=1(

z
α)k = 1−∑∞

k=0(
z
α)k

The series converges if|z|< |α|
X(z) = 1− 1

1−zα−1 = z
z−α, |z|< |α|.

Hence pole atz = α and a zero atz = 0

• The ROC is

Example 4

• Find thez-transform ofx[n] =−u[−n−1]+(1
2)

nu[n], Depict the ROC

and the poles and zeros

• Solution:X(z) = ∑∞
n=−∞(1

2)
nu[n]z−n−u[−n−1]z−n

= ∑∞
n=0(

1
2z)

n−∑−1
n=−∞(1

z )
n = ∑∞

n=0(
1
2z)

n +1−∑∞
k=0zk
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Figure 1.33: Example 3

• The series converges if|z|> 1
2 and|z|< 1

X(z) =
1

1− 1
2z−1

+1− 1
1− z

, 1/2 < |z|< 1.

X(z) =
z(2z− 3

2)

(z− 1
2)(z−1)

Hence poles atz = 1/2, z = 1 and zeros atz = 0, z = 3/4

• The ROC is

1.3.2 Unsolved problems from [2]

Unsolved ex. 7.17a

• Find thez-transform ofx[n] = δ[n− k], k > 0. Depict the ROC and the

poles and zeros

• Solution:X(z) = ∑∞
n=−∞ x[n]z−n = z−k, z 6= 0

Hence multiple poles atz = 0
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Figure 1.34: Example 4

Unsolved ex. 7.17b

• Find thez-transform ofx[n] = δ[n+ k], k > 0. Depict the ROC and the

poles and zeros

• Solution:X(z) = ∑∞
n=−∞ x[n]z−n = zk, all z

Hence multiple zeros atz = 0

Unsolved ex. 7.17d

• Find thez-transform ofx[n] = (1
4)

n(u[n]−u[n−5]).

• Solution:X(z) = ∑4
n=0(

1
4z−1)n =

(z5−(1
4)5)

z4(z−1
4)

all z Four poles atz = 0,

and one pole atz = 1/4

Five zeros atz = 1
4e jk 2

5π, k = 0,1,2,3,4

Note that zero fork = 0 cancels the pole atz = 1/4
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1.3.3 Exercises

Find thez-transforms of

(a)
(

1
4k

)

(b) (3k) (c) ((−2)k)

(d) (4,16,64,256, . . .) (e) (1,−3,9,−27, . . .) ( f ) (0,1,4,12,64,160, . . .)
(1.4)

For (a) we haver = 1/4 so

Z

[(
1
4k

)]

=
z

z−1/4
=

4z
4z−1

(1.5)

For (b) r = 3 giving For(a) we haver = 1/4 so

Z[(3k) =
z

z−3
(1.6)

In (c) r =−2 but this makes no difference

Z[((−2)k)] =
z

z+2
(1.7)

In (d) we see thatr = 4 so

Z[(4,16,64,256, . . .)] =
z

z−4
(1.8)

and in(e) r =−3 so

Z[(1,−3,9,−27, . . .)] =
z

z+3
(1.9)

Finally, looking carefully at( f ) you realize

(k2k−1) = (0,1,4,12,64,160, . . .) (1.10)
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and, hence,

Z[(0,1,4,12,64,160, . . .)] =
z

(z−2)2 (1.11)

Conclusions

• Thez-transform and the z-plane

• Importance of ROC

• Relation between the DTFT and thez-transform

• Convergence of thez-transform

• Poles and zeros ofX(z)
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1.4 Class 4: Region of convergence (ROC)

Outline of today’s class

• Region of convergence

• Properties ROC

The z-transform

• Thez-transform of any signalx[n] is

X(z) =
∞

∑
n=−∞

x[n]z−n

• Theinverse z-transform of is

x[n] =
1

2π j

I

X(z)zn−1dz

Convergence

• Existence ofz-transform: exists only if∑∞
n=−∞ x[n]z−n converges

• Necessary condition: absolute summability ofx[n]z−n, since|x[n]z−n|=
|x[n]r−n|, the condition is

∞

∑
n=−∞

|x[n]r−n|< ∞
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1.4.1 Properties of convergence

• ROC is related to characteristics ofx[n]

• ROC can be identified fromX(z) and limited knowledge ofx[n]

• The relationship between ROC and characteristics of thex[n] is used to

find inverse z-transform

Property 1

ROC can not contain any poles

• ROC is the set of allz for which z-transform converges

• X(z) must be finite for allz

• If p is a pole, then|H(p)| = ∞ andz-transform does not converge at

the pole

• Pole can not lie in the ROC

Property 2

The ROC for a finite duration signal includes entirez-plane exceptz = 0

or/andz = ∞

• Let x[n] be nonzero on the intervaln1≤ n≤ n2. Thez-transform is

X(z) =
n2

∑
n=n1

x[n]z−n

The ROC for a finite duration signal includes entirez-plane exceptz = 0

or/andz = ∞
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• If a signal is causal (n2 > 0) thenX(z) will have a term containingz−1,

hence ROC can not includez = 0

• If a signal is non-causal (n1 < 0) thenX(z) will have a term containing

powers ofz, hence ROC can not includez = ∞

The ROC for a finite duration signal includes entirez-plane exceptz = 0

or/andz = ∞

• If n2≤ 0 then the ROC will includez = 0

• If n1≥ 0 then the ROC will includez = ∞

• This shows the only signal whose ROC is entirez-plane isx[n] = cδ[n],

wherec is a constant

Finite duration signals

• The condition for convergence is|X(z)|< ∞

|X(z)|= |
∞

∑
n=−∞

x[n]z−n|

≤
∞

∑
n=−∞

|x[n]z−n|

magnitude of sum of complex numbers≤ sum of individual magni-

tudes

• Magnitude of the product is equal to product of the magnitudes

∞

∑
n=−∞

|x[n]z−n|=
∞

∑
n=−∞

|x[n]||z−n|
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• split the sum into negative and positive time parts

• Let

I−(z) =
−1

∑
n=−∞

|x[n]||z|−n

I+(z) =
∞

∑
n=0
|x[n]||z|−n

• Note thatX(z) = I−(z)+ I+(z). If both I−(z) andI+(z) are finite, then

X(z) if finite

• If x[n] is bounded for smallest+ve constantsA−, A+, r− andr+ such

that

|x[n]| ≤ A−(r−)n, n < 0

|x[n]| ≤ A+(r+)n, n≥ 0

• The signal that satisfies above two bounds grows no faster than (r+)n

for +ve n and(r−)n for −ve n

• If the n < 0 bound is satisfied then

I−(z)≤ A−
−1

∑
n=−∞

(r−)n|z|−n

= A−
−1

∑
n=−∞

(
r−
|z|)

n
= A−

∞

∑
k=1

(
|z|
r−

)
k

• Sum converges if|z| ≤ r−
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• If the n≥ 0 bound is satisfied then

I+(z) = A+

∞

∑
n=0

(r+)n|z|−n

= A+

∞

∑
n=0

(
r+

|z|)
n

• Sum converges if|z|> r+

• If r+ < |z|< r−, then bothI+(z) andI−(z) converge andX(z) converges

To summarize:

• If r+ > r− then no value ofz for which convergence is guaranteed

• Left handed signal is one for whichx[n] = 0 for n≥ 0

• Right handed signal is one for whichx[n] = 0 for n < 0

• Two sided signal that has infinite duration in both +ve and -vedirec-

tions

• The ROC of a right-sided signal is of the form|z|> r+

Finite duration signals contd..

• The ROC of a left-sided signal is of the form|z|< r−

• The ROC of a two-sided signal is of the formr+ < |z|> r−
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Figure 1.35: ROC of left sided sequence

Figure 1.36: ROC of right sided sequence

Figure 1.37: ROC of two sided sequence
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Figure 1.38: ROC of Example 1

1.4.2 Examples

Example 1

• Identify the ROC associated with thez-transform forx[n] = (−1
2 )nu[−n]+

2(1
4)

nu[n]

• Thez-transform isX(z)= ∑0
n=−∞(−1

2z )n+2∑∞
n=0(

1
4z)

n = ∑∞
k=0(−2z)k +

2∑∞
n=0(

1
4z)

n

• The first series converges for|z| < 1
2, and second series converges for

|z|> 1
4.

• Both series must converge forX(z) to converge, so the ROC is14 <

|z|< 1
2, andX(z) is

X(z) =
1

1+2z
+

2z

z− 1
4

• Poles are atz =−(1/2) andz = (1/4) and zero is atz = 0
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Figure 1.39: ROC of Example 2

Example 2

• Identify the ROC associated with thez-transform fory[n] = (−1
2 )nu[n]+

2(1
4)

nu[n]

• Thez-transform is

Y (z) =
∞

∑
n=0

(
−1
2z

)n +2
∞

∑
n=0

(
1
4z

)n

• The first series converges for|z| > 1
2, and second series converges for

|z|> 1
4.

• Both series must converge forY (z) to converge, so the ROC is|z|> 1
2,

andY (z) is

Y (z) =
z

z + 1
2

+
2z

z− 1
4

• Poles are atz =−(1/2) andz = (1/4) and zeros are atz = 0. The ROC

is outside a circle containing the pole of largest radiusz =−1/2
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Example 3

• Identify the ROC associated with thez-transform forw[n] = (−1
2 )nu[−n]+

2(1
4)

nu[−n]

• Thez-transform is

W (z) =
0

∑
n=−∞

(
−1
2z

)n +2
0

∑
n=−∞

(
1
4z

)n

=
∞

∑
k=0

(−2z)k +2
∞

∑
k=0

(4z)k

• The first series converges for|z| < 1
2, and second series converges for

|z|< 1
4.

• Both series must converge forW (z) to converge, so the ROC is|z|< 1
4,

andW (z) is

W (z) =
1

1+2z
+

2
1−4z

• Poles are atz =−(1/2) andz = (1/4) and zeros are atz = 0. The ROC

is inside the a circle containing the pole of smallest radiusz = 1/4
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Figure 1.40: ROC of Example 3

Example 4

• Find z-transform and ROC for two sided signalx[n] = α|n|, for both

|α|< 1 and|α|> 1

• Thez-transform is

X(z) =
−1

∑
n=−∞

(α−1z−1)n +
∞

∑
n=0

(α/z)n

=
∞

∑
k=0

(αz)k−1+
∞

∑
n=0

(α/z)n

• The first series converges for|αz| < 1, ie. |z| < 1
α and second series

converges forα|z| < 1, ie. |z|> α.

• Both series must converge forX(z) to converge, so the ROC isα <

|z|< 1
α ,

X(z) =
1

1−αz
−1+

1
1− α

z
=
−z

z− 1
α

+
z

z−α
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Figure 1.41: ROC of Example 4

• Poles are atz =−(1/α) andz = α and zeros are atz = 0. Letα = 1/2

• What happens when|α| > 1? The first series converges for|αz| < 1,

ie. |z|< 1
α and second series converges forα

|z| < 1, ie. |z|> α.

• Both series must converge forX(z) to converge, so the ROC isα <

|z|< 1
α , which is empty set

1.4.3 Unsolved examples from [2]

Unsolved ex. 7.18

• Given the z-transforms, determine whether the DTFT of the corre-

sponding time signals exists without determining the time signal, and

identify the DTFT in those cases where it exists:

Unsolved ex. 7.18(a)

• X(z) = 5
1+1

3z−1 , |z|> 1
3
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• ROC includes|z|= 1, hence DTFT exists

• DTFT is

X(e jΩ) =
5

1+ 1
3e− jΩ

Unsolved ex. 7.18(b)

• X(z) = 5
1+1

3z−1 , |z|< 1
3

• ROC does not include|z|= 1, hence DTFT does not exists

Unsolved ex. 7.18(c)

• X(z) = z−1

(1−1
2z−1)(1+3z−1 , |z|< 1

2

• ROC does not include|z|= 1, hence DTFT does not exists

Unsolved ex. 7.18(d)

• X(z) = z−1

(1−1
2z−1)(1+3z−1 , 1

2 < |z|< 3

• ROC includes|z|= 1, hence DTFT exists

• DTFT is

X(z) =
e− jΩ

(1− 1
2e− jΩ)(1+3e− jΩ)

Unsolved ex. 7.19

• The pole and zero locations ofX(z) are depicted in the z-plane on

the following figures. In each case, identify all valid ROCs for X(z)

and specify the characteristics of the time signal corresponding to each

ROC.
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Unsolved ex. 7.19(a)

• Two poles atz = −3/4 andz = 1/3. Two zeros atz = 0 andz = 3/2

(Fig. P7.19(a))

• Thez-transform is

X(z) =
Cz(z− 3

2)

(z + 3
4)(z− 1

3)

• There are three possible ROCs

• There are three possible ROCs

• |z|> 3
4, x[n] is right sided sequence

• 1
3 < |z|< 3

4, x[n] is two sided sequence

• |z|< 1
3, x[n] is left sided sequence

Unsolved ex. 7.19(b)

• Three poles atz = 0, z = 1+ j andz = 1− j. Four zeros atz =±1 and

z =± j (Fig. P7.19(b))

• Thez-transform is

X(z) =
C(z4−1)

z(z−
√

2e
jπ
4 )(z−

√
2e
− jπ

4 )

• There are two possible ROCs

• |z|>
√

2, x[n] is right sided sequence

• |z|<
√

2, x[n] is two sided sequence
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1.4.4 Exercises

Work out thez-transform of the following sequences

1. (2,4,10,28, . . .)

2. (2,−2,10,−26, . . .)

3. (3,0,0,0, . . .)

4. (0,0,1,1,1, . . .)

5. (0,2,4,10,28, . . .)

6. (0,0,1,2,4,8, . . .)

7. (1,1,0,1,1,1, . . .)
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Answers

1. Consider the sequence

(2,4,10,28, . . .) = (1,1,1,1, . . .)+(1,3,9,27, . . .) (1.12)

use linearity

Z[(2,4,10,28, . . .)] = Z[(1,1,1,1, . . .)]+Z[(1,3,9,27, . . .)]

=
z

z−1
+

z
z−3

=
2z2−4z

z2−4z+3
(1.13)

2. Consider the sequence

(2,−2,10,−26, . . .) = (1,1,1,1, . . .)+(1,−3,9,−27, . . .) (1.14)

use linearity

Z[(2,−2,10,−27, . . .)] = Z[(1,1,1,1, . . .)]+Z[(1,−3,9,−27, . . .)]

=
z

z−1
+

z
z+3

=
2z2+2z

z2+2z−3
(1.15)

3. (3,0,0,0, . . .) = 3(δk) soZ[(3,0,0,0, . . .)] = 3.

4. (0,0,1,1,1, . . .) is thek0 = 2 delay of(1,1,1,1, . . .) which means that

Z[(0,0,1,1,1, . . .)] =
1
z2

z
z−1

(1.16)

5. (0,2,4,10,28, . . .) is (xk−1) where(xk) = (2,4,10,28, . . .) as in first exercise, hence,

Z[(0,2,4,10,28, . . .)] =
1
z

2z2−4z
z2−4z+3

=
2z−4

z2−4z+3
(1.17)

6. (0,0,1,2,4,8, . . .) = (2k−2) andZ[(2k)] = z/(z−2), so,

Z[(0,0,1,2,4,8, . . .)] =
1
z2

z
z−2

=
1

z(z−2)
(1.18)
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7. This one is a bit trickier. Notice that

(1,1,0,1,1,1, . . .) = (1,1,1,1,1, . . .)− (0,0,1,0,0, . . .) (1.19)

and(0,0,1,0,0, . . .) = (δk−2). Hence, using linearity and the delay theorem we get

Z[(1,1,0,1,1,1, . . .)] = Z[(1,1,1,1,1, . . .)]−Z[(0,0,1,0,0, . . .)]

=
z

z−1
− 1

z2 =
z3− z+1
z2(z−1)

(1.20)

Conclusions

• Region of convergence

• Properties ROC
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1.5 Class 5: Properties ofz-transform

Outline of today’s class

• Properties ofz-transform

– Linearity

– Time reversal

– Time shift

– Multiplication by αn

– Convolution

– Differentiation in thez-domain

The z-transform

• Thez-transform of any signalx[n] is

X(z) =
∞

∑
n=−∞

x[n]z−n

• Theinverse z-transform of X(z) is

x[n] =
1

2π j

I

X(z)zn−1dz

Convergence

• Existence ofz-transform: exists only if∑∞
n=−∞ x[n]z−n converges
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• Necessary condition: absolute summability ofx[n]z−n, since|x[n]z−n|=
|x[n]r−n|, the condition is

∞

∑
n=−∞

|x[n]r−n|< ∞

Properties of convergence

• ROC can not contain any poles

• The ROC for a finite duration signal includes entirez-plane exceptz =

0 or/andz = ∞

1.5.1 Properties ofz-transform

• We assume that

x[n]
z←→ X(z), with ROC Rx

y[n]
z←→ Y (z), with ROC Ry

• General form of the ROC is a ring in thez-plane, so the effect of an

operation on the ROC is described by the a change in the radii of ROC

P1: Linearity

• Thez-transform of a sum of signals is the sum of individualz-transforms

ax[n]+by[n]
z←→ aX(z)+bY (z),

with ROC at least Rx∩Ry
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• The ROC is the intersection of the individual ROCs, since thez-transform

of the sum is valid only when both converge

P1: Linearity

• The ROC can be larger than the intersection if one or more terms in

x[n] or y[n] cancel each other in the sum.

• Consider an example:x[n] = (1
2)

nu[n]− (3
2)

nu[−n−1]

• We havex[n]
z←→ X(z)

Pole-zero cancellation

• X(z) = −z
(z−1

2)(z−3
2)

,with ROC 1
2 < |z|< 3

2

• y[n] = (1
4)

nu[n]− (1
2)

nu[n]

• We havey[n]
z←→ Y (z)

• Y (z) =
−(1

4)z

(z−1
4)(z−1

2)
,with ROC |z|> 1

2

• Find z-transform ofax[n]+by[n]

• The pole-zero plot and ROC ofx[n]

• The pole-zero plot and ROC ofy[n]

• Linearity property indicates thatax[n]+by[n]
z←→ a −z

(z−1
2)(z−3

2)
+b

−(1
4)z

(z−1
4)(z−1

2)

• In general ROC is the intersection of ROCs, ie.1
2 < |z|< 3

2

• However whena = b, the term(1
2)

nu[n] cancels in the time domain

signalax[n]+by[n] =
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Figure 1.42: Pole-zero plot and ROC ofx[n]

Figure 1.43: Pole-zero plot and ROC ofy[n]
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Figure 1.44: Pole-zero plot and ROC after cancellation

a((1
2)

nu[n]− (3
2)

nu[−n−1]+

(1
4)

nu[n]− (1
2)

nu[n])

= a(− (3
2)

nu[−n−1]+ (1
4)

nu[n])

• The ROC is larger now, ie.14 < |z|< 3
2

• In thez-domain

aX(z)+bY (z) =

a(
−z

(z− 1
2)(z− 3

2)
+

−1
4z

(z− 1
4)(z− 1

2)
)

= a
−1

4z(z− 3
2)− z(z− 1

4)

(z− 1
4)(z− 1

2)(z− 3
2)

• In thez-domain

aX(z)+bY(z) = a
−5

4z(z− 1
2)

(z− 1
4)(z− 1

2)(z− 3
2)
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• The zero atz = 1
2 cancels the pole atz = 1

2, so

aX(z)+bY (z) = a
−5

4z

(z− 1
4)(z− 3

2)

• The cancellation of the term(1
2)

nu[n] in time domain corresponds to

cancellation of the pole atz = 1
2 by a zero in thez-domain

• This pole defined the ROC boundary, so the ROC enlarges when the

pole is canceled

• The ROC can be larger than the intersection if one or more terms in

x[n] or y[n] cancel each other in the sum.

P2: Time reversal

• Time reversal or reflection corresponds to replacingz by z−1. Hence,

if Rx is of the forma < |z|< b then the ROC of the reflected signal is

a < 1/|z|< b or 1/b < |z|< 1/a

If x[n]
z←→ X(z), with ROC Rx

Then x[−n]
z←→ X(

1
z
), with ROC

1
Rx

Proof: Time reversal

• Let y[n] = x[−n]

Y (z) = ∑∞
n=−∞ x[−n]z−n

Let l =−n, then

Y (z) = ∑∞
l=−∞ x[l]zl
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Y (z) = ∑∞
l=−∞ x[l](1

z )
−l

Y (z) = X(1
z )

P3: Time shift

• Time shift of no in the time domain corresponds to multiplication of

z−no in thez-domain

If x[n]
z←→ X(z), with ROC Rx

Then x[n−no]
z←→ z−noX(z),

with ROC Rx except z = 0 or |z|= ∞

P3: Time shift, no > 0

• Multiplication by z−no introduces a pole of orderno at z = 0

• The ROC can not includez = 0, even ifRx does includez = 0

• If X(z) has a zero of at least orderno at z = 0 that cancels all of the

new poles then ROC can includez = 0

P3: Time shift, no < 0

• Multiplication by z−no introducesno poles at infinity

• If these poles are not canceled by zeros at infinity inX(z) then the ROC

of z−noX(z) can not include|z|= ∞
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Proof: Time shift

• Let y[n] = x[n−no]

Y (z) = ∑∞
n=−∞ x[n−no]z−n

Let l = n−no, then

Y (z) = ∑∞
l=−∞ x[l]z−(l+no)

Y (z) = z−no ∑∞
l=−∞ x[l]z−l

Y (z) = z−noX(z)

P4: Multiplication by αn

• Let α be a complex number

If x[n]
z←→ X(z), with ROC Rx

Then αnx[n]
z←→ X(

z
α

), with ROC |α|Rx

• |α|Rx indicates that the ROC boundaries are multiplied by|α|.

• If Rx is a < |z|< b then the new ROC is|α|a < |z|< |α|b

• If X(z) contains a poled, ie. the factor(z− d) is in the denominator

thenX( z
α) has a factor(z−αd) in the denominator and thus a pole at

αd.

• If X(z) contains a zeroc, thenX( z
α) has a zero atαc

• This indicates that the poles and zeros ofX(z) have their radii changed

by |α|

• Their angles are changed byarg{α}
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• If |α|= 1 then the radius is unchanged and ifα is +ve real number then

the angle is unchanged

Proof: Multiplication by αn

• Let y[n] = αnx[n]

Y (z) =
∞

∑
n=−∞

αnx[n]z−n

Y (z) =
∞

∑
l=−∞

x[l](
z
α

)−n

Y (z) = X(
z
α

)

P5: Convolution

• Convolution in time domain corresponds to multiplication in the z-

domain If x[n]
z←→X(z), with ROC Rx If y[n]

z←→Y (z), with ROC Ry

Then x[n]∗ y[n]
z←→ X(z)Y (z),

with ROC at leastRx∩Ry

• Similar to linearity the ROC may be larger than the intersection of Rx

andRy
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Proof: Convolution

• Let c[n] = x[n]∗ y[n]

C(z) =
∞

∑
n=−∞

(x[n]∗ y[n])z−n

C(z) =
∞

∑
n=−∞

(
∞

∑
k=−∞

x[k]∗ y[n− k])z−n

C(z) =
∞

∑
k=−∞

x[k]( (
∞

∑
n=−∞

y[n− k])z−(n−k)

︸ ︷︷ ︸

Y (z)

)z−k

C(z) = (
∞

∑
k=−∞

x[k]z−k

︸ ︷︷ ︸

X(z)

)Y (z)

C(z) = X(z)Y (z)

P6: Differentiation in the z domain

• Multiplication by n in the time domain corresponds to differentiation

with respect toz and multiplication of the result by−z in thez-domain

If x[n]
z←→X(z), with ROC Rx Then nx[n]

z←→−z d
dzX(z) with ROC Rx

• ROC remains unchanged

Proof: Differentiation in the z domain

• We know

X(z) =
∞

∑
n=−∞

x[n]z−n
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Differentiate with respect toz

d
dz

X(z) =
∞

∑
n=−∞

(−n)x[n]z−nz−1

• Multiply with −z

−z
d
dz

X(z) =
∞

∑
n=−∞

−(−n)x[n]z−nz−1z

−z
d
dz

X(z) =
∞

∑
n=−∞

nx[n]z−n

Then nx[n]
z←→−z

d
dz

X(z) with ROC Rx

1.5.2 Examples

Example 1

Use thez-transform properties to determine thez-transform

• x[n] = n((−1
2 )nu[n])∗ (1

4)
−nu[−n]

• Solution is:

a[n] = (−1
2 )nu[n]

z←→ A(z) = 1
1+1

2z−1 , |z|> 1
2

b[n] = na[n]
z←→ B(z) =−z d

dzA(z) =−z d
dz(

1
1+1

2z−1), |z|> 1
2

b[n] = na[n]
z←→ B(z) =

−1
2 z

(1+1
2z)2 , |z|> 1

2

c[n] = (1
4)

nu[n]
z←→C(z) = 1

1−1
4z−1 , |z|> 1

4

Use thez-transform properties to determine thez-transform

• x[n] = n((−1
2 )nu[n])∗ (1

4)
−nu[−n]
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• Solution continued

d[n] = c[−n] = (1
4)
−nu[−n]

z←→ D(z) = C(1
z ) = 1

1−1
4z

, |z|< 4

x[n] = (b[n]∗d[n])
z←→ X(z) = B(z)D(z), 1

2 < |z|< 4

x[n] = (b[n]∗d[n])
z←→

−1
2 z

(1+1
2z)2

1
(1−1

4z)
, 1

2 < |z|< 4

x[n] = (b[n]∗d[n])
z←→ 2z

(1+1
2z)2(z−4)

, 1
2 < |z|< 4

Example 2

Use thez-transform properties to determine thez-transform

• x[n] = an cos(Ωon)u[n], wherea is real and +ve

• Solution is:

b[n] = anu[n]
z←→ B(z) = 1

1−az−1 , |z|> a

Put cos(Ωon) = 1
2e jΩon + 1

2e− jΩon, so we get

x[n] = 1
2e jΩonb[n]+ 1

2e− jΩonb[n]

Use thez-transform properties to determine thez-transform

• x[n] = an cos(Ωon)u[n], wherea is real and +ve

• Solution continued

x[n]
z←→ X(z) = 1

2B(e jΩoz)+ 1
2B(e− jΩoz), |z|> a

x[n]
z←→ X(z) = 1

2
1

1−ae jΩoz−1 + 1
2

1
1−ae− jΩoz−1 , |z|> a

x[n]
z←→ X(z) = 1

2(
1−ae jΩoz−1+1−ae− jΩo

(1−ae jΩoz−1)(1−ae− jΩoz−1)
)

x[n]
z←→ X(z) = 1−acos(Ωo)z−1

1−2acos(Ωo)z−1+a2z−2 , |z|> a
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1.5.3 Unsolved examples from [2]

Unsolved ex. 7.20(a)

Use thez-transform properties to determine thez-transform

• x[n] = (1
2)

nu[n]∗2nu[−n−1]

• Solution is:

a[n] = (1
2)

nu[n]
z←→ A(z) = 1

1−1
2z−1 , |z| > 1

2 b[n] = 2nu[−n−1]
z←→

B(z) = 1
1−2z−1 , |z|< 2 a[n]∗ b[n]

z←→ X(z) = A(z)B(z), 1
2 < |z|< 2

X(z) = 1
1−1

2z−1
1

1−2z−1 ,
1
2 < |z|< 2

Unsolved ex. 7.20(b)

Use thez-transform properties to determine thez-transform

• x[n] = n((1
2)

nu[n]∗ (1
4)

nu[n−2])

• Solution is:

a[n] = (1
2)

nu[n]
z←→A(z)= 1

1−1
2z−1 , |z|> 1

2 b[n] = (1
4)

nu[n]
z←→B(z) =

1
1−1

4z−1 , |z| > 1
4 c[n] = b[n− 2]

z←→ C(z) = z−2

1−1
4z−1 , |z| > 1

4 x[n] =

n(a[n]∗ c[n])
z←→ X(z) =−z d

dzA(z)C(z) |z|> 1
2
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1.5.4 Exercises

1. Solve the difference equationxk+2−4xk+1−5xk = 0 with x0 = 0 and

x1 = 1.

2. Solve the difference equationxk+2−9xk+1+20xk = 0 with x0 = 0 and

x1 = 1.

3. Solve the difference equationxk+2 +5xk+1+6xk = 0 with x0 = 0 and

x1 = 1.

4. Solve the difference equationxk+2+2xk+1−48xk = 0 with x0 = 0 and

x1 = 1.

5. Solve the difference equationxk+2+7xk+1−18xk = 0 with x0 = 0 and

x1 = 1.

6. Solve the difference equationxk+2−6xk+1+5xk = 0 with x0 = 0 and

x1 = 1.
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Answers

1. So, take thez-transform of both sides

z2X − z−4zX−5X = 0 (1.21)

hence

X =
z

z2−4z−5
(1.22)

Move thez to the left and do partial fractions,

1
z

X =
1

z2−4z−5
=

1
(z−5)(z +1)

=
1

6(z−5)
− 1

6(z +1)
(1.23)

Thus

X =
z

6(z−5)
− z

6(z +1)
(1.24)

and

xk =
1
6

5k− 1
6
(−1)k (1.25)

2. So, take thez-transform of both sides

z2X − z−9zX +20X = 0 (1.26)

hence

X =
z

z2−9z +20
(1.27)

Move thez to the left and do partial fractions,

1
z

X =
1

z2−9z +20
=

1
(z−5)(z−4)

=
1

z−5
− 1

z−4
(1.28)
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Thus

X =
z

z−5
− z

z−4
(1.29)

and

xk = 5k−4k (1.30)

3. So, take thez-transform of both sides

z2X − z +5zX +6X = 0 (1.31)

hence

X =
z

z2+5z +6
(1.32)

Move thez to the left and do partial fractions,

1
z

X =
1

z2+5z +6
=

1
(z +2)(z +3)

=
1

z +2
− 1

z +3
(1.33)

Thus

X =
z

z +2
− z

z +3
(1.34)

and

xk = (−2)k− (−3)k (1.35)

4. So, take thez-transform of both sides

z2X − z +2zX−48X = 0 (1.36)

hence

X =
z

z2+2z−48
(1.37)
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Move thez to the left and do partial fractions,

1
z

X =
1

z2+2z−48
=

1
(z +8)(z−6)

=− 1
14(z +8)

+
1

14(z−6)
(1.38)

Thus

X =− z
14(z +8)

+
z

14(z−6)
(1.39)

and

xk =− 1
14

(−8)k +
1
14

6k (1.40)

5. So, take thez-transform of both sides

z2X − z +7zX−18X = 0 (1.41)

hence

X =
z

z2+7z−18
(1.42)

Move thez to the left and do partial fractions,

1
z

X =
1

z2+7z−18
=

1
(z−2)(z +9)

=
1

11(z−2)
− 1

11(z +9)
(1.43)

Thus

X =
z

11(z−2)
− z

11(z +9)
(1.44)

and

xk =
1
11

(−2)k− 1
11

(−9)k (1.45)

6. So, take thez-transform of both sides

z2X − z−6zX +5X = 0 (1.46)
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hence

X =
z

z2−6z +5
(1.47)

Move thez to the left and do partial fractions,

1
z

X =
1

z2−6z +5
=

1
(z−5)(z−1)

=
1

4(z−5)
− 1

4(z−1)
(1.48)

Thus

X =
z

4(z−5)
− z

4(z−1)
(1.49)

and

xk =
1
4

5k− 1
4

(1.50)

Conclusions

• Properties ofz-transform

– Linearity

– Time reversal

– Time shift

– Multiplication by αn

– Convolution

– Differentiation in thez-domain

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 102

1.6 Class 6: Inversez-transform

Outline of today’s class

• Inversez-transform

• Directly from inversez-transform equation requires understanding of

complex variable theory

• Alternate methods of inversez-transform

– Partial fraction method: uses basicz-transform pairs and proper-

ties

– Power series method: expressX(z) in-terms ofz−1 and find by

inspection

1.6.1 Partial fraction method

• In case of LTI systems, commonly encountered form ofz-transform is

X(z) =
B(z)
A(z)

X(z) =
b0+b1z−1+ . . .+bMz−M

a0+a1z−1+ . . .+aNz−N

UsuallyM < N

• If M > N then use long division method and expressX(z) in the form

X(z) =
M−N

∑
k=0

fkz−k +
B̃(z)
A(z)
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whereB̃(z) now has the order one less than the denominator polyno-

mial and use partial fraction method to findz-transform

• The inversez-transform of the terms in the summation are obtained

from the transform pair and time shift property

1
z←→ δ[n]

z−no z←→ δ[n−no]

• If X(z) is expressed as ratio of polynomials inz instead ofz−1 then

convert into the polynomial ofz−1

• Convert the denominator into product of first-order terms

X(z) =
b0+b1z−1+ . . .+bMz−M

a0∏N
k=1(1−dkz−1)

wheredk are the poles ofX(z)

For distinct poles

• For all distinct poles, theX(z) can be written as

X(z) =
N

∑
k=1

Ak

(1−dkz−1)

• Depending on ROC, the inversez-transform associated with each term

is then determined by using the appropriate transform pair

• We get

Ak(dk)
nu[n]

z←→ Ak

1−dkz−1,
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with ROC z > dk OR

−Ak(dk)
nu[−n−1]

z←→ Ak

1−dkz−1,

with ROC z < dk

• For each term the relationship between the ROC associated with X(z)

and each pole determines whether the right-sided or left sided inverse

transform is selected

For Repeated poles

• If pole di is repeatedr times, then there arer terms in the partial-

fraction expansion associated with that pole

Ai1

1−diz−1,
Ai2

(1−diz−1)2, . . . ,
Air

(1−diz−1)r

• Here also, the ROC ofX(z) determines whether the right or left sided

inverse transform is chosen.

A
(n+1) . . .(n+m−1)

(m−1)!
(di)

nu[n]
z←→ A

(1−diz−1)m , with ROC|z|> di

• If the ROC is of the form|z|< di, the left-sided inversez-transform is

chosen, ie.

−A
(n+1) . . .(n+m−1)

(m−1)!
(di)

nu[−n−1]
z←→ A

(1−diz−1)m , with ROC|z|< di

Deciding ROC

• The ROC ofX(z) is the intersection of the ROCs associated with the

individual terms in the partial fraction expansion.
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• In order to chose the correct inversez-transform, we must infer the

ROC of each term from the ROC ofX(z).

• By comparing the location of each pole with the ROC ofX(z).

• Chose the right sided inverse transform: if the ROC ofX(z) has the

radius greater than that of the pole associated with the given term

• Chose the left sided inverse transform: if the ROC ofX(z) has the

radius less than that of the pole associated with the given term

1.6.2 Examples

Example 1a

Example of proper rational function

• Find the inversez-transform of

X(z) =
1− z−1+ z−2

(1− 1
2z−1)(1−2z−1)(1− z−1)

,

with ROC 1< |z|< 2

• Solution: Use partial fraction and rewrite the expression

X(z) =
A1

(1− 1
2z−1)

+
A2

(1−2z−1)
+

A3

(1− z−1)

• Solving for A1, A2 and A3 gives the values asA1 = 1, A2 = 2 and

A3 =−2,

X(z) =
1

(1− 1
2z−1)

+
2

(1−2z−1)
− 2

(1− z−1)
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Figure 1.45: ROC for Example 1

• Find the inversez-transform of the individual terms

• Use the relationship between the location of poles and the ROC of X(z)

• From figure, one pole is atz = 1
2, ROC has a radius greater than the

pole atz = 1
2. This term corresponds to right-sided sequence.

(
1
2
)

nu[n]
z←→ 1

1− 1
2z−1

• Another pole is atz = 2, ROC has a radius smaller than the pole at

z = 2. This term corresponds to left-sided sequence.

−2(2)nu[−n−1]
z←→ 2

1−2z−1
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• Third pole is atz = 1, ROC has a radius greater than the pole atz = 1.

This term corresponds to right-sided sequence.

−2u[n]
z←→− 2

1− z−1

• Combining the individual terms gives

x[n] = (
1
2
)

nu[n]−2(2)nu[−n−1]−2u[n]

• (b) Repeat the example 1 with the ROC1
2 < |z|< 1

Example 1b

• From figure, one pole is atz = 1
2, ROC has a radius greater than the

pole atz = 1
2. This term corresponds to right-sided sequence.

(
1
2
)

nu[n]
z←→ 1

1− 1
2z−1

• Another pole is atz = 2, ROC has a radius smaller than the pole at

z = 2. This term corresponds to left-sided sequence.

−2(2)nu[−n−1]
z←→ 2

1−2z−1

• Third pole is atz = 1, ROC has a radius smaller than the pole atz = 1.

This term corresponds to left-sided sequence.

2u[−n−1]
z←→− 2

1− z−1
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• Combining the individual terms gives

x[n] = (
1
2
)

nu[n]−2(2)nu[−n−1]+2u[−n−1]

• (c) Repeat the example 1 with the ROC|z|< 1
2

Example 1c

• From figure, one pole is atz = 1
2, ROC has a radius smaller than the

pole atz = 1
2. This term corresponds to left-sided sequence.

−(
1
2
)

nu[−n−1]
z←→ 1

1− 1
2z−1

• Another pole is atz = 2, ROC has a radius smaller than the pole at

z = 2. This term corresponds to left-sided sequence.

−2(2)nu[−n−1]
z←→ 2

1−2z−1

• Third pole is atz = 1, ROC has a radius smaller than the pole atz = 1.

This term corresponds to left-sided sequence.

2u[−n−1]
z←→− 2

1− z−1

• Combining the individual terms gives

x[n] =−(
1
2
)

nu[−n−1]−2(2)nu[−n−1]

+2u[−n−1]
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Figure 1.46: ROC for Example 2

Example 2

Example of improper rational function

• Find the inversez-transform of

X(z) =
z3−10z2−4z +4

2z2−2z−4
,

with ROC |z|< 1

• Solution: Find the locations of poles by determining the roots of de-

nominator polynomial

2z2−4z +4= 0

• We get the poles atz =−1 andz = 2

• The ROC and pole locations are
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• ConvertX(z) into a ratio of polynomials inz−1

X(z) =
1
2

z(
1−10z−1−4z−2+4z−3

1− z−1−2z−2 ) =
1
2

zA(z)

• The factor12z can be incorporated using time-shift property

• Use long division method and reduce the order of the numerator poly-

nomial

• We get quotient as−2z−1+3 and remainder as−5z−1−2, then

A(z) =−2z−1+3+
−5z−1−2

1− z−1−2z−2

• We haveX(z) = 1
2zA(z) andA(z) =−2z−1+3+W(z)

• Use partial fraction expansion to find the inversez-transform ofW (z)

W (z) =
−5z−1−2

1− z−1−2z−2 =
1

1+ z−1−
3

1−2z−1

• We haveX(z) = 1
2zA(z) andA(z) =−2z−1+3+W(z)

• So we can write

A(z) =−2z−1+3+
1

1+ z−1−
3

1−2z−1

with ROC|z|< 1
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• The ROC has a smaller radius than either pole, hence the inverse z-

transform ofA(z)

a[n] =−2δ[n−1]+3δ[n]− (−1)nu[−n−1]

+3(2)nu[−n−1]

• Apply the time shift property

x[n−no]
z←→ z−noX(z),

with ROC Rx except z = 0 or |z|= ∞

• Here, we haveX(z) = 1
2zA(z), sono =−1 and

x[n] =
1
2

a[n+1]

• So we getx[n] as

x[n] =
1
2

a[n+1] =−δ[n]+
3
2

δ[n+1]− 1
2
(−1)n+1

u[−n−2]+3(2)nu[−n−2]

1.6.3 Unsolved example from [2]

Unsolved ex. 7.24(a)

Example of proper rational function

• Find the inversez-transform of
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X(z) =
1+ 7

6z−1

(1− 1
2z−1)(1+ 1

3z−1)

with ROC |z|> 1
2

• We can write

X(z) =
A

1− 1
2z−1

+
B

1+ 1
3z−1

Put z = 0 and we get 1= A+B

Put z = 1 and we get
13
6

=
4
3

A+
1
2

B

• Solve forA andB, we getA = 2 andB =−1

• Put the vales ofA andB we get

X(z) =
2

1− 1
2z−1

+
−1

1+ 1
3z−1

• Take inversez-transform ofX(z), andx[n] is right-sided sequence

x[n] = 2(
1
2
)

nu[n]− (− 1
3
)

nu[n]

Unsolved ex. 7.24(b)

Example of proper rational function

• Find the inversez-transform of

X(z) =
1+ 7

6z−1

(1− 1
2z−1)(1+ 1

3z−1)

with ROC |z|< 1
3
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• We can write

X(z) =
2

1− 1
2z−1

+
−1

1+ 1
3z−1

• Take inversez-transform ofX(z), andx[n] is left-sided sequence

x[n] =−2(
1
2
)

nu[−n−1]+ (− 1
3
)

nu[−n−1]

Unsolved ex. 7.24(c)

Example of proper rational function

• Find the inversez-transform of

X(z) =
1+ 7

6z−1

(1− 1
2z−1)(1+ 1

3z−1)

with ROC 1
3 < |z|< 1

2

• We can write

X(z) =
2

1− 1
2z−1

+
−1

1+ 1
3z−1

• Take inversez-transform ofX(z), andx[n] is two-sided sequence

x[n] =−2(
1
2
)

nu[−n−1]− (− 1
3
)

nu[n]
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1.6.4 Exercises

1. Solve the difference equationxk+2−4xk+1−5xk = 0 with x0 = 0 and

x1 = 1.

2. Solve the difference equationxk+2−9xk+1+20xk = 2k with x0 = 0 and

x1 = 0.

3. Solve the difference equationxk+2+5xk+1+6xk = (−2)k with x0 = 0

andx1 = 0.

4. Solve the difference equationxk+2+2xk+1−48xk = 0 with x0 = 4 and

x1 = 2.

5. Solve the difference equationxk+2+7xk+1−18xk = δk with x0 = 0 and

x1 = 0.
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Answers

1. So take thez-transform of both sides

z2X − z−4zX−5X = 0 (1.51)

and move things around to getX/z on one side and then do partial

fractions

1
z

X =
1

z2−4z−5
=

1
(z−5)(z +1)

=
A

z−5
+

B
z +1

(1.52)

In the usual way, we have

1 = A(z +1)+B(z−5) (1.53)

and puttingz = 5 givesA = 1/6 and puttingz = −1 givesB = −1/6.

Now

X =
z

6(z−5)
− 1

6(z +1)
(1.54)

and hence

xk =
1
6

5k− 1
6
(−1)k (1.55)

2. So, in this example, the right hand side of the difference equation is

not zero. Taking thez-transform of both sides we get

z2X −9zX +20X = Z[(2k)] =
z

z−2
(1.56)

Hence, sincez2−9z +20= (z−5)(z−4)

1
z

X =
1

(z−5)(z−4)(z−2)
(1.57)

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 116

The usual partial fractions tells us that

1
(z−5)(z−4)(z−2)

=
1

3(z−5)
− 1

2(z−4)
+

1
6(z−2)

(1.58)

and so

xk =
1
3

5k− 1
2

4k +
1
6

2k (1.59)

3. Again, taking thez-transform of both sides we have

z2X +5zX +6X =
z

z +2
(1.60)

Now, sincez2+5z +6 = (z +2)(z +3)

1
z

X =
1

(z +2)2(z +3)
(1.61)

and there is a repeated root. The partial fraction expansionwith a re-

peated root includes the root and its square, so we get

1
(z +2)2(z +3)

=
A

z +2
+

B
(z +2)2 +

C
z +3

(1.62)

and so

1 = A(z +2)(z +3)+B(z +3)+C(z +2)2 (1.63)

Choosingz = −2 givesB = 1 andz = −3 givesC = 1. No value ofz

will give A on its own, so we choose another convenient value and put

in the known values ofB andC:

1 = 6A+3+4 (1.64)
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soA =−1. Now, this means

X =− z
z +2

+
z

(z +2)2 +
z

z +3
(1.65)

and so

xk = (−2)k + k(−2)k−1+(−3)k (1.66)

4. Take thez-transform of both sides, taking care to note the initial con-

ditions

z2X−4z2−2z +2(zX−4z)−48X = 0 (1.67)

Thus

z2X +2zX−48X = 4z2−10z (1.68)

giving
1
z

X =
4z−10

(z +8)(z−6)
=

A
z +8

+
B

z−6
(1.69)

Multiplying across we get

4z−10= A(z−6)+B(z +8) (1.70)

Choosingz =−8 we have

−42=−14A (1.71)

implying A = 3. Choosingz = 6

14= 14B (1.72)
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soB = 1 and we get

X =
3z

z +8
+

z
z−6

(1.73)

and

xk = 3(−8)k +6k (1.74)

5. Now, taking thez-transform and usingZ[(δk)] = 1

z2X +7zX−18X = 1 (1.75)

and so

X =
1

z2+7z−18
=

1
(z−9)(z +2)

=
1

11(z−9)
− 1

11(z +2)
(1.76)

Thus

X =
1
z

(
z

11(z−9)
− z

11(z +2)

)

(1.77)

and so, using the delay theorem, we have

xk =

{

0 k = 0
1
119k−1− 1

11(−2)k−1 k > 0
(1.78)

Partial fraction method

• It can be applied to complex valued poles

• Generally the expansion coefficients are complex valued

• If the coefficients inX(z) are real valued, then the expansion coeffi-

cients corresponding to complex conjugate poles will be complex con-

jugate of each other
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• Here we use information other than ROC to get unique inverse trans-

form

• We can use causality, stability and existence of DTFT

• If the signal is known to be causal then right sided inverse transform is

chosen

• If the signal is stable, then t is absolutely summable and hasDTFT

• Stability is equivalent to existence of DTFT, the ROC includes the unit

circle in thez-plane, ie.|z|= 1

• The inversez-transform is determined by comparing the poles and the

unit circle

• If the pole is inside the unit circle then the right-sided inversez-transform

is chosen

• If the pole is outside the unit circle then the left-sided inversez-transform

is chosen

Conclusions

• Inversez-transform

• Directly from inversez-transform equation requires understanding of

complex variable theory

• Alternate methods of inversez-transform
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– Partial fraction method: uses basicz-transform pairs and proper-

ties
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1.7 Class 7: Inversez-transform

Outline of today’s class

• Power series method of finding inversez-transform: expressX(z) in-

terms ofz−1 and find the inversez-transform by inspection

• The transfer function: another method of describing the system and

also provides a method to find inversez-transform

Partial fraction method

• If X(z) is expressed as ratio of polynomials inz instead ofz−1 then

convert into the polynomial ofz−1

• If X(z) is in improper fraction the convert into proper fraction anduse

time shift property

• Convert the denominator into product of first-order terms

• Depending on ROC, the inversez-transform associated with each term

is then determined by using the appropriate transform pair for both

distinct and real poles

• We can use causality, stability and existence of DTFT

• If the signal is stable, then it is absolutely summable and has DTFT

1.7.1 Power series expansion

• ExpressX(z) as a power series inz−1 or z as given inz-transform equa-

tion
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• The values of the signalx[n] are then given by coefficient associated

with z−n

• Main disadvantage: limited to one sided signals

• Signals with ROCs of the form|z|> a or |z|< a

• If the ROC is|z| > a, then expressX(z) as a power series inz−1 and

we get right sided signal

• If the ROC is|z|< a, then expressX(z) as a power series inz and we

get left sided signal

Using long division

• Find thez-transform of

X(z) =
2+ z−1

1− 1
2z−1

,with ROC |z|> 1
2

• Solution is: use long division method to writeX(z) as a power series

in z−1, since ROC indicates thatx[n] is right sided sequence

• We get

X(z) = 2+2z−1+ z−2+
1
2

z−3+ . . .

• Compare withz-transform

X(z) =
∞

∑
n=−∞

x[n]z−n
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• We get

x[n] = 2δ[n]+2δ[n−1]+δ[n−2]

+
1
2

δ[n−3]+ . . .

• If we change the ROC to|z| < 1
2, then expandX(z) as a power series

in z using long division method

• We get

X(z) =−2−8z−16z2−32z3+ . . .

• We can writex[n] as

x[n] =−2δ[n]−8δ[n+1]−16δ[n+2]

−32δ[n+3]+ . . .

Power series expansion

• Find thez-transform of

X(z) = ez2
,with ROC allz except|z|= ∞

• Solution is: use power series expansion forea and is given by

ea =
∞

∑
k=0

ak

k!

• We can writeX(z) as

X(z) =
∞

∑
k=0

(z2)k

k!
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X(z) =
∞

∑
k=0

z2k

k!

• We can writex[n] as

x[n] =







0 n > 0 orn is odd
1

(−n
2 )!

, otherwise

1.7.2 Unsolved examples from [2]

Unsolved ex.7.28(a)

• Find x[n] using power series method if

X(z) =
1

1− 1
4z−2

, |z|> 1
4

• Write X(z) in the power series

X(z) =
∞

∑
k=0

(
1
4

z−2)k

• Write x[n] by comparing withX(z)

x[n] =
∞

∑
k=0

(
1
4
)kδ[n−2k]

x[n] =

{

(1
4)

n
2 , n even andn≥ 0

0 n odd

Unsolved ex.7.28(b)
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• Find x[n] using power series method if

X(z) =
1

1− 1
4z−2

, |z|< 1
4

• Write X(z) in the power series

X(z) =
−4z2

1−4z2 =−4z2
∞

∑
k=0

(4z2)k

• Write X(z) in the power series

X(z) =−4z2
∞

∑
k=0

(2z)2k =−
∞

∑
k=0

22(k+1)z2(k+1)

• Write x[n] by comparing withX(z)

x[n] =−
∞

∑
k=0

22(k+1)δ[n+2(k +1)]

Unsolved ex.7.28(d)

• Find x[n] using power series method if

X(z) = ln(1+ z−1), |z|> 0

• We know

ln(1+a) =
∞

∑
k=0

(−1)k−1

k
(a)k
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• Write X(z) in the power series

X(z) =
∞

∑
k=0

(−1)k−1

k
(z−1)k

• Write x[n] by comparing withX(z)

x[n] =−
∞

∑
k=0

(−1)k−1

k
δ[n− k]

1.7.3 The transfer function

• We have defined the transfer function as thez-transform of the impulse

response of an LTI system

H(z) =
∞

∑
k=−∞

h[k]z−k

• Then we havey[n] = x[n]∗h[n] andY (z) = X(z)H(z)

• This is another method of representing the system

• The transfer function can be written as

H(z) =
Y (z)
X(z)

• This is true for allz in the ROCs ofX(z) andY (z) for which X(z) in

nonzero

• The impulse response is thez-transform of the transfer function

• We need to know ROC in order to uniquely find the impulse response
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• If ROC is unknown, then we must know other characteristics such as

stability or causality in order to uniquely find the impulse response

System identification

• Finding a system description by using input and output is known as

system identification

• Ex1: find the system, if the input isx[n] = (−1//3)nu[n] and the out is

y[n] = 3(−1)nu[n]+ (1/3)nu[n]

• Solution: Find thez-transform of input and output. UseX(z) andY (z)

to find H(z), then findh(n) using the inversez-transform

X(z) =
1

(1+(1
3)z
−1)

, with ROC |z|> 1
3

Y (z) =
3

(1+ z−1)
+

1

(1− (1
3)z
−1)

, with ROC |z|> 1

• We can writeY (z) as

Y (z) =
4

(1+ z−1)(1− (1
3)z
−1)

, with ROC |z|> 1

• We knowH(z) = Y (z)/X(z), so we get

H(z) =
4(1+(1

3)z
−1)

(1+ z−1)(1− (1
3)z
−1)

with ROC |z|> 1

• We need to find inversez-transform to findx[n], so use partial fraction
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and writeH(z) as

H(z) =
2

1+ z−1 +
2

1− (1
3)z
−1

with ROC |z|> 1

• Impulse responsex[n] is given by

h[n] = 2(−1)nu[n]+2(1/3)nu[n]

• Ex2: If the impulse response of an LTI system ish[n] = (1/2)nu[n].

Find the input if the out isy[n] = (1/2)nu[n]+ (−1/2)nu[n]

• FindH(z) andY (z), we haveX(z) =Y (z)/H(z), find x[n] by taking the

inversez-transform

• We getx[n] asx[n] = 2(−1/2)nu[n]

Relation between transfer function and difference equation

• The transfer can be obtained directly from the difference-equation de-

scription of an LTI system

• We know that
N

∑
k=0

aky[n− k] =
M

∑
k=0

bkx[n− k]

• We know that the transfer functionH(z) is an eigen value of the system

associated with the eigen functionzn, ie. if x[n] = zn then the output of

an LTI systemy[n] = znH(z)

• Putx[n− k] = zn−k andy[n− k] = zn−kH(z) in the difference equation,
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we get

zn
N

∑
k=0

akz−kH(z) = zn
M

∑
k=0

bkz−k

• We can solve forH(z)

H(z) =
∑M

k=0bkz−k

∑N
k=0akz−k

• The transfer function described by a difference equation isa ratio of

polynomials inz−1 and is termed as a rational transfer function.

• The coefficient ofz−k in the numerator polynomial is the coefficient

associated withx[n− k] in the difference equation

• The coefficient ofz−k in the denominator polynomial is the coefficient

associated withy[n− k] in the difference equation

• This relation allows us to find the transfer function and alsofind the

difference equation description for a system, given a rational function

Example 1

• Find the transfer function and the impulse response for the causal LTI

system described by

y[n]− 1
4

y[n−1]− 3
8

y[n−2] =−x[n]+2x[n−1]

• We can write

H(z) =
−1+2z−1

1− (1
4)z
−1− 3

8z−2
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• Write H(z) in terms of partial fraction expansion

H(z) =
2

1+ 1
2z−1

+
1

1− (3
4)z
−1

• This is causal system so we can write

h[n] =−2(− 1
2
)

nu[n]+ (
3
4
)

nu[n]

Example 2

• Find the the difference equation description of an LTI system with

transfer function

H(z) =
5z +2

z2+3z +2

• Solution: RewriteH(z) as a ratio of polynomials inz−1

H(z) =
5z−1+2z−2

1+3z−1+2z−2

• Compare this with the difference equation description of the transfer

functionH(z), we getM = 2,N = 2,b0 = 0,b1 = 5,b2 = 2,a0 = 1,a1 =

3 anda2 = 2

• We can write the difference equation as

y[n]+3y[n−1]+2y[n−2] = 5x[n−1]+2x[n−2]

Transfer function

• The poles and zeros of a rational function offer much insightinto LTI
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system characteristics

• The transfer function can be expressed in pole-zero form by factoring

the numerator and denominator polynomial

• If ck and dk are zeros and poles of the system respectively andb̃ =

b0/a0 is the gain factor, then

H(z) =
b̃∏M

k=1(1− ckz−1)

∏N
k=1(1−dkz−1)

• This form assumes there are no poles and zeros atz = 0

• The pth order pole atz = 0 occurs whenb0 = b1 = . . . = bp−1 = 0

• Thelth order zero atz = 0 occurs whena0 = a1 = . . . = al−1 = 0

• Then we can writeH(z) as

H(z) =
b̃z−p ∏M−p

k=1 (1− ckz−1)

z−l ∏N−l
k=1(1−dkz−1)

whereb̃ = bp/al

• In the example we had first order pole atz = 0

• The poles, zeros and gain factorb̃ uniquely determine the transfer func-

tion

• This is another description for input-output behavior of the system

• The poles are the roots of characteristic equation
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Conclusions

• Power series method of finding inversez-transform

• The transfer function
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1.8 Class 8: Causality, stability and Inverse systems

Outline of today’s class

• Causality of an LTI system and the inversez-transform

• Stability of an LTI system and the inversez-transform

• Inverse systems

• Stability and causality of an inverse system

1.8.1 Causality

• The impulse response of an LTI system is zero forn < 0

• The impulse response of a causal LTI system is determined from the

transfer function by using right sided inverse transforms

• The pole inside the unit circle in thez-plane contributes an exponen-

tially decaying term

• The pole outside the unit circle in thez-plane contributes an exponen-

tially increasing term

1.8.2 Stability

• The system is stable: if impulse response is absolutely summable and

DTFT of impulse response exists

• The ROC must include the unit circle: the pole and unit circletogether

define the behavior of the system
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Figure 1.47: When the pole is inside the unit circle

Figure 1.48: When the pole is outside the unit circle
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Figure 1.49: Stability: When the pole is inside the unit circle

• A stable impulse response can not contain any increasing exponential

term

• The pole inside the unit circle in thez-plane contributes right-sided

exponentially decaying term

• The pole outside the unit circle in thez-plane contributes left-sided

exponentially decaying term

1.8.3 Causal and stable system

• Stable and causal LTI system: all the poles must be inside theunit

circle

• A inside pole contributes right sided or causal exponentially decaying

system

• A outside pole contributes either left sided decaying term which is not

causal or right-sided exponentially increasing term whichis not stable
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Figure 1.50: Stability: When the pole is outside the unit circle

Figure 1.51: Location of poles for the causal and stable system

• Example of stable and causal system: all the poles are insidethe unit

circle

1.8.4 Examples

Ex1: Causal and Stable

• Find the impulse response when (a) system is stable (b) causal (c) can

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 137

Figure 1.52: Location of poles in Example 1

this system be causal and stable?

H(z) =
2

1−0.9e j π
4z−1

+
2

1−0.9e− j π
4z−1

+
3

1+2z−1

• Solution: The system has poles atz = e j π
4 andz = e− j π

4 andz =−2

Ex1(a): Stable system

• The location of poles in thez-plane

Ex1(a): Stable system

• For stable system: the ROC must include the unit circle

• Two poles inside the unit circle contribute right sided terms
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• The pole outside the unit circle gives left sided sequence

Ex1(a): Stable system

• Impulse response is

h[n] = 2(0.9e j π
4)nu[n]+2(0.9e− j π

4)nu[n]

−3(−2)nu[−n−1]

h[n] = 4(0.9)n cos(
π
4

n)u[n]

−3(−2)nu[−n−1]

Ex1(b): Causal system

• For causal system: all the poles must contribute the right sided terms,

h[n] = 2(0.9e j π
4)nu[n]+2(0.9e− j π

4)nu[n]

+3(−2)nu[n]

h[n] = 4(0.9)n cos(
π
4

n)u[n]+3(−2)nu[n]

Ex1(c): Causal and stable system

• For causal and stable system: all the poles must be inside theunit circle

• We have one pole atz =−2, which is outside the unit circle, hence the

system can not be both stable and causal system

Ex2: Recursive system
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• Find the given recursive system is both stable and causaly[n]−ρy[n−
1] = x[n] with ρ = 1+ r

100 andr is +ve

• H(z) = 1
1−ρz−1 , a pole is atz = ρ and is greater than one, the pole is

outside the unit circle and hence system can not be both causal and

stable system

Ex3: Stable and causal system

• Find the impulse response of a stable and causal system described by

a difference equation

y[n]+
1
4

y[n−1]− 1
8

y[n−2] =−2x[n]+
5
4

x[n−1]

• Solution: find thez-transform from the difference equation and then

find the impulse response

Ex3: Stable and causal system

• z-transform is

H(z) =
∑M

k=0bkz−k

∑N
k=0akz−k

H(z) =
−2+ 5

4z−1

1+ 1
4z−1− 1

8z−2

• Find the poles ofH(z) and Write the denominator in product form

Ex3: Stable and causal system

• We get

H(z) =
−2+ 5

4z−1

(1+ 1
2z−1)(1− 1

4z−1)
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• Write H(z) in terms of partial fraction expansion

H(z) =
−3

1+ 1
2z−1

+
1

1− 1
4z−1

Ex3: Stable and causal system

• Now write the impulse response for a causal and stable system

h[n] =−3(− 1
2
)

nu[n]+ (
1
4
)

nu[n]

1.8.5 Inverse system

• Impulse response (hinv) of an inverse system satisfies

hinv[n]∗h[n] = δ[n]

whereh[n] is the impulse response of a system to be inverted

• Take inversez-transform on both sides gives

H inv(z)H(z) = 1

H inv(z) =
1

H(z)

• The transfer function of an LTI inverse system is the inverseof the

transfer function of the system that we desire to invert

• If we write the pole-zero form ofH(z) as

H(z) =
b̃z−p ∏M−p

k=1 (1− ckz−1)

z−l ∏N−l
k=1(1−dkz−1)

Signals and Systems course under VTU-EDUSAT program



Dr. Uma Mudenagudi, Department of E & C, BVBCET, Hubli 141

whereb̃ = bp/al

• Then we can writeH inv as

H inv(z) =
z−l ∏N−l

k=1(1−dkz−1)

b̃z−p ∏M−p
k=1 (1− ckz−1)

• The zeros ofH(z) are the poles ofH inv(z)

• The poles ofH(z) are the zeros ofH inv(z)

• System defined by a rational transfer function has an inversesystem

• We need inverse systems which are both stable and causal to invert the

distortions introduced by the system

• The inverse systemH inv(z) is stable and causal if all poles are inside

the unit circle

• Poles ofH inv(z) are zeros of(z)

• Inverse systemH inv(z): stable and causal inverse of an LTI system

H(z) existsif and only if all the zeros ofH(z) are inside the unit circle

• The system with all its poles and zeros inside the unit circleis called

asminimum-phase system

• The magnitude response is uniquely determined by the phase response

and vice-Vera

• For aminimum-phase system the magnitude response is uniquely de-

termined by the phase response and vice-versa
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Figure 1.53: Location of poles in aminimum-phase system

Ex1: stable and causal system

• Find the transfer function of an inverse LTI system described by a dif-

ference equation

y[n]− y[n−1]+
1
4

y[n−2] = x[n]+
1
4

x[n−1]− 1
8

x[n−2]

Is the system stable and causal?

• Solution: find thez-transform from the difference equation and then

find the impulse response

• z-transform is

H(z) =
∑M

k=0bkz−k

∑N
k=0akz−k

H(z) =
1+ 1

4z−1− 1
8z−2

1− z−1+ 1
4z−2

• Find the poles and zeros ofH(z) and write in the product form
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• We can writeH(z) as

H(z) =
(1− 1

4z−1)(1+ 1
2z−1)

(1− 1
2z−1)2

• We can writeH inv(z) as

H inv(z) =
1

H(z)
=

(1− 1
2z−1)2

(1− 1
4z−1)(1+ 1

2z−1)

• The poles of inverse system are atz = 1
4 andz =−1

2

• Two poles are inside the unit circle, hence the system can be both stable

and causal

• The zero is also inside the unit circle and the system isminimum-phase

system

Ex2: inverse system

• Find the transfer function and difference equation description of the

inverse system of discrete LTI system, which describes multipath com-

munication channel (two path communication channel)

y[n] = x[n]+ax[n−1]

• The system is

• z-transform is

H(z) =
∑M

k=0bkz−k

∑N
k=0akz−k
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H(z) = 1+az−1

• The inverse system is

H inv(z) =
1

H(z)
=

1
1+az−1

• The corresponding difference equation description is

y[n]+ay[n−1] = x[n]

• The inverse system is both stable and causal when|a|< 1

Ex3: inverse system

• Find the transfer function of the inverse system and is the inverse sys-

tem stable and causal?

h[n] = 2δ[n]+
5
2
(
1
2
)

nu[n]− 7
2
(− 1

4
)

nu[n]
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H(z) = 2+
5
2

1

(1− 1
2z−1)

− 7
2

1

(1+ 1
4z−1)

• Write H(z) in product form

H(z)=
2(1− 1

2z−1)(1+ 1
4z−1)+5

2(1+ 1
4z−1)+7

2(1− 1
2z−1)

(1− 1
2z−1)(1+ 1

4z−1)

• After simplification we get

H(z) =
(1− 1

8z−1)(1+2z−1)

(1− 1
2z−1)(1+ 1

4z−1)

• We knowH inv(z) = 1
H(z), so we can write

H inv(z) =
(1− 1

2z−1)(1+ 1
4z−1)

(1− 1
8z−1)(1+2z−1)

• Poles are atz = 1
8 andz =−2, so the system can not be both stable and

causal

1.8.6 Unsolved examples from [2]

Unsolved ex:7.34(a)

• Is the system (i)causal and stable (ii)minimum phase

H(z) =
2z +3

z2+ z− 5
16

H(z) =
2z +3

(z + 5
4)(z− 1

4)
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• Write the poles and zeros

• Poles are atz = 1
8 andz =−2, so the system can not be both stable and

causal

• Poles are atz = 1
4 andz =−5

4, and a zero is atz =−3
2

• (i) All poles are not inside|z|= 1, hence the system is not causal and

stable.

• (ii) All poles and zeros are not inside|z| = 1, the system is not mini-

mum phase.

Unsolved ex:7.34(b)

• Is the system (i)causal and stable (ii)minimum phase

y[n]− y[n−1]− 1
4

y[n−2] = 3x[n]−2x[n−1]

• Write the poles and zeros

• Poles are atz =
1±
√

(2)
2 and zeros are atz = 0 andz = 2

3

• (i) All poles are not inside|z|= 1, hence the system is not causal and

stable.

• (ii) All poles and zeros are not inside|z| = 1, the system is not mini-

mum phase.

• (i) All poles are not inside|z|= 1, hence the system is not causal and

stable.
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• (ii) All poles and zeros are not inside|z| = 1, the system is not mini-

mum phase.

Unsolved ex:7.35(a)

• Find the transfer function of an inverse system and determine whether

it can be both causal and stable

H(z) =
1−8z−1+16z−2

1− 1
2z−1+ 1

4z−2

H(z) =
(z−4)2

(z− 1
2)

2

• Write the inverse system

H inv(z) =
(z− 1

2)
2

(z−4)2

• Double poles atz = 4, hence the poles are outside the unit circle and

inverse system is not stable and causal

Unsolved ex:7.35(b)

• Find the transfer function of an inverse system and determine whether

it can be both causal and stable

H(z) =
z2− 81

100

z2−1

H inv(z) =
z2−1

z2− 81
100
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• Double poles atz = 9
10, hence the poles are inside the unit circle and

inverse system is stable and causal

Conclusions

• Causality of an LTI system and the inversez-transform

• Stability of an LTI system and the inversez-transform

• Inverse systems

• Stability and causality of an inverse system
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1.9 Class 9: Pole zero representation and frequency re-

sponse

Outline of today’s class

• Pole zero representation ofH(z)

• Determining the frequency response from poles and zeros

1.9.1 Frequency response

• The frequency response is obtained from thez-transform by substitut-

ing z = e jΩ in H(z)

• The frequency response is transfer function evaluated on the unit circle

in thez-plane

• We assume existence of DTFT ie. ROC includes the unit circle

• Substitutingz = e jΩ in the pole-zero representation ofH(z), and is

given by

H(e jΩ) =
b̃e− jpΩ ∏M−p

k=1 (1− cke− jΩ)

e− jlΩ ∏N−l
k=1(1−dke− jΩ)

• RewriteH(e jΩ) in terms of +ve powers ofe jΩ, this is done by multi-

plying e jNΩ to both numerator and denominator

• We get

H(e jΩ) =
b̃e j(N−M)Ω ∏M−p

k=1 (e jΩ− ck)

∏N−l
k=1(e jΩ−dk)
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• Examine the magnitude and phase response ofH(e jΩ)

• Evaluate the magnitude ofH(e jΩ) at some fixed value ofΩo

• Magnitude ofH(e jΩ) at Ωo is given by

H(e jΩo) =
|b̃|∏M−p

k=1 |e jΩ− ck|
∏N−l

k=1 |e jΩ−dk|

• This consists of a ratio of products of the terms|e jΩ− g|, whereg is

either a pole or zero. We have terms with zeros in the numerator and

poles in the denominator

• Use vectors to represent the complex numbers in thez-plane

• e jΩo is a vector from origin to the pointe jΩo

• g is a vector from origin to the pointg

• e jΩo−g is represented as a vector from the pointg to the pointe jΩo

• The vectors are

• The length of vector is|e jΩo−g|

• Asses the contribution of each pole and zero to the overall frequency

response by examining|e jΩo−g| asΩo changes

• Find |e jΩo−g| for different values ofΩo

• The different vectors are

• Figure 1.55(a) shows the vectore jΩo−g for different values ofΩ
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Figure 1.54: Vectorg ande jΩ
o in thez-plane

Figure 1.55:|e jΩo−g| for different values ofΩ
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• Figure 1.55(b) shows|e jΩo−g| as a continuous function of frequency

• If Ω = arg{g}, then|e jΩo−g| takes a minimum value of 1−|g| when

g is inside the unit circle

• If Ω = arg{g}, then|e jΩo− g| takes a maximum value|g|−1 wheng

is outside the unit circle

• If Ω = arg{g}, andg is close to the unit circle(g≈ 1), then|e jΩo−g|
becomes very small

• |e jΩo−g| contributes to the numerator of|H(e jΩo)|

• |H(e jΩo)| tends to take minimum value at frequencies neararg{g}

• How for |H(e jΩo)| decreases depends on how close it is to the unit

circle

• If g is on the unit circle then|H(e jΩo)|= 0 atg

• |e jΩo−g| contributes to the denominator of|H(e jΩo)|

• When|e jΩo−g| decreases then|H(e jΩo)| increases depending on how

far the pole is from the unit circle

• Close to the unit circleg causes large variation in|H(e jΩo)| at the fre-

quency ofg

• The zero tends to pull the frequency and pole tends to push thefre-

quency response

• The zero tends to pull the frequency magnitude down at the frequency

corresponding to zero
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Figure 1.56: Zero location of the system

• The pole tends to push the frequency magnitude up at the frequency

corresponding to pole

Ex1. Two path channel

• The two path communication channel is given by

H(z) = 1+az−1

• Sketch the magnitude response of the system and its inverse system for

a = 0.5e
jπ
4 , a = 0.8e

jπ
4 anda = 0.95e

jπ
4

• The zero location of the system

• The two path communication channel has a zero atz = a
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Figure 1.57: Pole location of the inverse system

• The minimum ofH(e jΩ), for the system occurs at the frequency cor-

responding to the angle of zero ofH(z) at Ω = π/4

• The minimum of|H(e jΩ)| is 1−|a|

• As a approaches unity, the channel magnitude response atΩ = π/4 ap-

proaches to zero and the two path channel suppresses any components

of the input having frequency atΩ = π/4

• The pole location of the inverse system

• The inverse system has a pole atz = a

• The maximum ofH inv(e jΩ), for the inverse system occurs at the fre-

quency corresponding to the angle of zero ofH(z) at Ω = π/4

• The maximum of|H inv(e jΩ)| occurs atΩ = π/4, and is 1
(1−|a|)
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Figure 1.58: Magnitude response of the system and inverse system whena = 0.5e
jπ
4

• As a approaches unity, the channel magnitude response of the inverse

system atΩ = π/4 approaches to infinity

• If the two path channel eliminates the components of the input having

frequency atΩ = π/4, the inverse system can not restore this compo-

nent to original value

• Large value of gain are undesirable since it also enhances the noise.

H inv9z) is highly sensitive to small changes ina asa→ 1

• The magnitude response for the system and inverse system when a =

0.5e
jπ
4

• The magnitude response for the system and inverse system when a =

0.8e
jπ
4

• The magnitude response for the system and inverse system when a =

0.95e
jπ
4
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Figure 1.59: Magnitude response of the system and inverse system whena = 0.8e
jπ
4

Figure 1.60: Magnitude response of the system and inverse system whena = 0.95e
jπ
4
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Figure 1.61: Pole zero location for Ex2

Ex2. Magnitude response

• Sketch the magnitude response of an LTI system with transferfunction

H(z) =
1+ z−1

(1−0.9e
jπ
4 z−1)(1−0.9e

− jπ
4 z−1)

• The system has zero atz =−1 and poles atz = 0.9e
jπ
4 andz = 0.9e

− jπ
4

• The magnitude response due to zero, the system has zero magnitude

response atΩ = π

• The magnitude response due to polez = 0.9e
jπ
4 , large magnitude re-

sponse atΩ =±π/4, pole is close to|z|= 1
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Figure 1.62: Magnitude response due to zero

Figure 1.63: Magnitude response due to polez = 0.9e
jπ
4
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Figure 1.64: Magnitude response due to polez = 0.9e−
jπ
4

• The magnitude response due to polez = 0.9e−
jπ
4 , large magnitude re-

sponse atΩ =±π/4, pole is close to|z|= 1

• The magnitude response due both poles and zero (product of all re-

sponses)

Ex3. Magnitude response

• Sketch the magnitude response of the LTI system with transfer function

H(z) =
z−1

z +0.9

• The phase ofH(e jΩ) is evaluated in terms of phase associated with

each pole and zero

• We write the phase as

arg{H(e jΩ)}= arg{b̃}+(N−M)Ω
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Figure 1.65: Overall magnitude response for Ex2

+
M−p

∑
k=1

arg{e jΩ− ck}−
N−l

∑
k=1

arg{e jΩ−dk}

• The phase ofH(e jΩ)=sum of phases due to zeros - sum of phases due

to poles

• The first tern is independent of frequency

• The phase associated with each zero and pole is evaluated fromarg{e jΩ−
g}

• This is the angle associated with a vector pointing fromg to e jΩ

• The angle is measured with respect to horizontal line passing through

g

• The contribution of pole or zero to the overall response is determined

by the angle ofe jΩ−g vector as the frequency changes

Frequency response
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Figure 1.66: Phase associated with the pole or zero

Figure 1.67: Overall magnitude response for Ex3
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• Exact evaluation of frequency response is best performed numerically

• We can approximately estimate from the location of poles andzeros

and get an insight into the nature of frequency response

• Asymptotic approximations like Bode-plots are not used fordiscrete

time systems, since the frequency range is limited to−π < Ω < π

1.9.2 Unsolved examples from [2]

Unsolved ex. 7.37(a)

• Sketch the magnitude response of the systems having the following

transfer functions:

H(z) =
z−2

1+ 49
64z−2

• Solution: WriteH(z) in the product form

H(z) =
1

(z + j7
8)(z− j7

8)

H(e jΩ) =
1

(e jΩ + j7
8)(e

jΩ− j7
8)

• The locations of poles in thez-plane

• The magnitude response is
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Figure 1.68: Pole zero locations in thez-plane

Figure 1.69: Magnitude response
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Unsolved ex. 7.37(b)

• Sketch the magnitude response of the systems having the following

transfer functions:

H(z) =
1+ z−1+ z−2

3

• Solution: WriteH(z) in the product form

• We get

H(z) =
z2+ z +1

3z2

H((e jΩ) =
e j2Ω + e jΩ +1

3e j2Ω

• Poles atz = 0 (double), and zeros atz = e±
j2π
3

• The locations of poles in thez-plane

• The magnitude response is
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Figure 1.70: Pole zero locations in thez-plane

Figure 1.71: Magnitude response
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Unsolved ex. 7.37(c)

• Sketch the magnitude response of the systems having the following

transfer functions:

H(z) =
1+ z−1

1+ 18
10cos(π

4)z−1+ 81
100z−2

• Solution: WriteH(z) in the product form and we get

H(z) =
1+ z−1

(1− 9
10e

j3π
4 z−1)(1− 9

10e
− j3π

4 z−1)

H(e jΩ) =
e j2Ω + e jΩ

e jΩ +(18/10)cos(π
4)e jΩ +81/100

• Zeros atz =−1 (double), and poles atz = e±
j3π
4

• The locations of poles in thez-plane

• The magnitude response is

Conclusions

• Pole zero representation ofH(z)

• Determining the frequency response from poles and zeros
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Figure 1.72: Pole zero locations in thez-plane

Figure 1.73: Magnitude response
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1.10 Class 10: Unilateralz-transform

Outline of today’s class

• Unilateralz-transform

• Properties of unilateralz-transform

• Solving difference equation with initial condition

• Implementations of continuous time systems

1.10.1 Unilateralz-transform

• Useful in case of causal signals and LTI systems

• The choice of time origin is arbitrary, so we may choosen = 0 as the

time at which the input is applied and then study the responsefor times

n≥ 0

Advantages

• We do not need to use ROCs

• It allows the study of LTI systems described by the difference equation

with initial conditions

Unilateral z-transform

• The unilateralz-transform of a signalx[n] is defined as

X(z) =
∞

∑
n=0

x[n]z−n
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which depends only onx[n] for n≥ 0

• The unilateral and bilateralz-transforms are equivalent for causal sig-

nals

αnu[n]
zu←→ 1

1−αz−1

an cos(Ωon)u[n]
zu←→ 1−acos(Ωo)z−1

1−2acos(Ωo)z−1+a2z−2

1.10.2 Properties

• The same properties are satisfied by both unilateral and bilateral z-

transforms with one exception: the time shift property

• The time shift property for unilateralz-transform: Letw[n] = x[n−1]

• The unilateralz-transform ofw[n] is

W (z) =
∞

∑
n=0

w[n]z−n =
∞

∑
n=0

x[n−1]z−n

W (z) = x[−1]+
∞

∑
n=1

x[n−1]z−n

W (z) = x[−1]+
∞

∑
m=0

x[m]z−(m+1)

• The unilateralz-transform ofw[n] is

W (z) = x[−1]+ z−1
∞

∑
m=0

x[m]z−m

W (z) = x[−1]+ z−1X(z)
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• A one-unit time shift results in multiplication byz−1 and addition of

the constantx[−1]

• In a similar way, the time-shift property for delays greaterthan unity is

x[n− k]
zu←→ x[−k]+ x[−k +1]z−1+

. . .+ x[−1]z−k+1+ z−kX(z) for k > 0

• In the case of time advance, the time-shift property changesto

x[n+ k]
zu←→−x[0]zk− x[−1]zk−1+

. . .− x[k−1]z + zkX(z) for k > 0

1.10.3 Solving difference equation with initial conditions

• Consider the difference equation description of an LTI system

N

∑
k=0

aky[n− k] =
M

∑
k=0

bkx[n− k]

• We may write thez-transform as

A(z)Y (z)+C(z) = B(z)X(z)

where

A(z) =
N

∑
k=0

akz−k and B(z) =
M

∑
k=0

bkz−k
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• We get

C(z) =
N−1

∑
m=0

N

∑
k=m+1

aky[−k +m]z−m

• We have assumed thatx[n] is causal and

x[n− k]
zu←→ z−kX(z)

• The termC(z) depends on theN initial conditionsy[−1],y[−2], . . . ,y[−N]

and theak

• C(z) is zero if all the initial conditions are zero

• Solving forY (z), gives

Y (z) =
B(z)
A(z)

X(z)−C(z)
A(z)

• The output is the sum of the forced response due to the input and the

natural response induced by the initial conditions

• The forced response due to the input

B(z)
A(z)

X(z)

• The natural response induced by the initial conditions

C(z)
A(z)

• C(z) is the polynomial, the poles of the natural response are the roots

of A(z), which are also the poles of the transfer function
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• The form of natural response depends only on the poles of the system,

which are the roots of the characteristic equation

First order recursive system

• Consider the first order system described by a difference equation

y[n]−ρy[n−1] = x[n]

whereρ = 1+r/100, andr is the interest rate per period in percent and

y[n] is the balance after the deposit or withdrawal ofx[n]

•

• Assume bank account has an initial balance of $10,000/- and earns 6%

interest compounded monthly. Starting in the first month of the second

year, the owner withdraws $100 per month from the account at the

beginning of each month. Determine the balance at the start of each

month.

• Solution: Take unilateralz-transform and use time-shift property we

get

Y (z)−ρ(y[−1]+ z−1Y (z)) = X(z)

• Rearrange the terms to findY (z), we get

(1−ρz−1)Y (z) = X(z)+ρy[−1]

Y (z) =
X(z)

1−ρz−1 +
ρy[−1]

1−ρz−1
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•

• Y (z) consists of two terms

– one that depends on the input: the forced response of the system

– another that depends on the initial conditions: the naturalresponse

of the system

• The initial balance of $10,000 at the start of the first month is the initial

conditiony[−1], and there is an offset of two between the time indexn

and the month index

• y[n] represents the balance in the account at the start of then + 2nd

month.

• We haveρ = 1+
6
12

100 = 1.005

• Since the owner withdraws $100 per month at the start of month13

(n = 11)

• We may express the input to the system asx[n] = −100u[n−11], we

get

X(z) =
−100z−11

1− z−1

• We get

Y (z) =
−100z−11

(1− z−1)(1−1.005z−1)
+

1.005(10,000)
1−1.005z−1
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• After a partial fraction expansion we get

Y (z) =
20,000z−11

1− z−1 +
20,000z−11

1−1.005z−1 +
10,050

1−1.005z−1

• Monthly account balance is obtained by inversez-transformingY (z)

We get

y[n] = 20,000u[n−11]−20,000(1.005)n−11u[n−11]

+10,050(1.005)nu[n]

• The last term 10,050(1.005)nu[n] is the natural response with the ini-

tial balance

• The account balance

• The natural balance

• The forced response
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Figure 1.74: Account balance
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Figure 1.75: The natural response
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Figure 1.76: The forced response
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Example 2

• Determined the forced responsey( f )[n], the natural responsey(n)[n] and

outputy[n] of the system described by the difference equation

y[n]+3y[n−1] = x[n]+ x[n−1]

if the input isx[n] = (1
2)

nu[n] andy[−1] = 2 is the initial condition

• Solution: Find the unilateralz-transform and then write in the partial

fraction form and find the outy[n], the forced response and the natural

response

• The output is

y[n] = y( f )[n]+ y(n)[n]

• The forced response

y( f )[n] =
4
7
(−3)nu[n]+

3
7
(
1
2
)nu[n]

• the natural response

y(n)[n] =−6(−3)nu[n]

1.10.4 Unsolved examples from [2]

Unsolved Ex. 7.41(a)
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• Find the unilateralz-transform ofx[n] = u[n+4]

x[n] = u[n+4]
zu←→ X(z) =

∞

∑
n=0

x[n]z−n

X(z) =
∞

∑
n=0

z−n

X(z) =
1

1− z−1

Unsolved Ex. 7.41(b)

• Find the unilateralz-transform ofw[n] = x[n− 2] using (a) and time-

shift property

w[n] = x[n−2]
zu←→W (z) = x[−2]+ x[−1]z−1+ z−2X(z)

W (z) = 1+ z−1+
z−2

1− z−1

Unsolved Ex. 7.42(a)

• Use the unilateralz-transform to determine the forced response, the

natural response, and the complete response of the system described

by the difference equation

y[n]− 1
3

y[n−1] = 2x[n]

y[−1] = 1,x[n] = (−1)nu[n]
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• Solution: takez-transform ofx[n] is

X(z) =
1

1+ 1
2z−1

• Takez-transform

Y (z)− 1
3
(z−1Y (z)+1) = 2X(z)

Y (z)(1− 1
3

z−1) =
1
3

+2X(z)

• z-transform

Y (z) =
1
3

1

1− 1
3z−1

+2
1

1− 1
3z−1X(z)

• We know that

Y (z) = Y (n)(z)+Y ( f )(z)

• Thez-transform of natural response is

Y (n)(z) =
1
3

1

1− 1
3z−1

• The natural response is

y(n)[n] =
1
3
(
1
3
)

nu[n]

• Thez-transform of forced response is

Y ( f )(z) = 2
1

1− 1
3z−1

X(z) = 2
1

1− 1
3z−1

1

1+ 1
2z−1
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• Write the partial fraction expansion and write the forced response and

is given by

Y ( f )(z) =
6
5

1+ 1
2z−1

+
4
5

1− 1
3z−1

• The forced response is

y( f )[n] =
6
5
(− 1

2
)

nu[n]+
4
5
(
1
3
)

nu[n]

• Complete response is

y[n] =
6
5
(− 1

2
)

nu[n]+
17
15

(
1
3
)

nu[n]
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Unsolved Ex. 7.42(b)

• Use the unilateralz-transform to determine the forced response, the

natural response, and the complete response of the system described

by the difference equation

y[n]− 1
9

y[n−2] = 2x[n−1]

y[−1] = 1,y[−2] = 0, x[n] = 2u[n]

• Solution: takez-transform ofx[n] is

X(z) =
2

1− z−1

• Takez-transform

Y (z)− 1
9
(z−2Y (z)+ z−1) = z−1X(z)

Y (z)(1− 1
9

z−2) =
1
9

z−1+ z−1X(z)

• z-transformY (z) is

Y (z) =
1
9

z−1

1− 1
9z−2

+
z−1X(z)

1− 1
9z−2

• We know that

Y (z) = Y (n)(z)+Y ( f )(z)
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• Thez-transform of natural response is

Y (n)(z) =
1
9

z−1

1− 1
9z−2

Y (n)(z) =
1
6

1

1− 1
3z−1

− 1
6

1

1+ 1
3z−1

• The natural response is

y(n)[n] =
1
6
(
1
3
)

nu[n]− 1
6
(− 1

3
)

nu[n]

• Thez-transform of forced response is

Y ( f )(z) =
9
4

1− z−1−
3
4

1+ 1
3z−1

−
3
2

1− 1
3z−1

• Write the partial fraction expansion and write the forced response and

is given by

y( f )[n] =
9
4

u[n]− 3
4
(− 1

3
)

nu[n]− 3
2
(
1
3
)

nu[n]
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Unsolved Ex. 7.42(c)

• Use the unilateralz-transform to determine the forced response, the

natural response, and the complete response of the system described

by the difference equation

y[n]− 1
4

y[n−1]− 1
8

y[n−2] = x[n]+ x[n−1]

y[−1] = 1,y[−2] =−1, x[n] = 3nu[n]

• Solution: takez-transform ofx[n] is

X(z) =
1

1−3z−1

• Takez-transform

Y (z)− 1
4
(z−1Y (z)+1)− 1

8
(z−2Y (z)+ z−1−1)

= X(z)+ z−1X(z)

• z-transformY (z) is

Y (z)(1− 1
4

z−1− 1
8

z−2) =
1
8

+
1
8

z−1+(1+ z−1)X(z)

Y (z) =
1
8

1

(1+ 1
4z−1)(1− 1

2z−1)
+

(1+ z−1)X(z)

(1− 1
2z−1)(1+ 1

4z−1)

• We know that

Y (z) = Y (n)(z)+Y ( f )(z)
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• Thez-transform of natural response is

Y (n)(z) =
1
4

1

1− 1
2z−1

− 1
8

1

1+ 1
4z−1

• The natural response is

y(n)[n] =
1
4
(
1
2
)

nu[n]− 1
8
(− 1

4
)

nu[n]

• Thez-transform of forced response is

Y ( f )(z) =
96
65

1−3z−1−
2
5

1− 1
2z−1

−
1
13

1+ 1
4z−1

• Write the partial fraction expansion and write the forced response and

is given by

y( f )[n] =
96
35

(3)nu[n]− 2
5
(− 1

2
)

nu[n]− 1
13

(− 1
4
)

nu[n]

Continuous time

• Rewrite the differential equation

N

∑
k=0

ak
dk

dtk y(t) =
M

∑
k=0

bk
dk

dtk x(t)

as an integral equation. Letv(0)(t) = v(t) be an arbitrary signal, and

set

v(n)(t) =
Z t

−∞
v(n−1)(τ)dτ, n = 1,2,3, . . .

wherev(n)(t) is then-fold integral ofv(t) with respect to time
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• Rewrite in terms of an initial condition on the integrator as

v(n)(t) =

Z t

0
v(n−1)(τ)dτ+ v(n)(0), n = 1,2,3, . . .

• If we assume zero ICs, then differentiation and integrationare inverse

operations, ie.

d
dt

v(n)(t) = v(n−1)(t), t > 0 and n = 1,2,3, . . .

• Thus, if N ≥M and integrateN times, we get the integral description

of the system

∑k = 0Naky(N−k)(t) = ∑k = 0Mbkx(N−k)(t)

• For second order system witha0 = 1, the differential equation can be

written as

y(t)=−a1y(1)(t)−a0y(2)(t)+b2x(t)+a1x(1)(t)+b0x(2)(t)

Conclusions

• Unilateralz-transform

• Properties of unilateralz-transform

• Solving difference equation with initial condition

• Implementations of continuous time systems
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Figure 1.77: Direct form I structure

Figure 1.78: Direct form II structure
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1.11 Class 11: Discussion of questions from previous ques-

tion papers

Outline of today’s class

• Solution to question papers

• Unsolved examples from the book

1.11.1 Theory part from the question papers

• Signal: power, energy, symmetric, non-symmetric, even, odd, periodic,

aperiodic

• Operations on signal

• Signal types: step, impulse, ramp

Systems

• Systems representations: (i) impulse response- characterizes the be-

havior (ii)Linear constant coefficient differential or difference equation-

input output behavior (ii) Block diagram- as an interconnection of three

elementary operations

• Systems characteristics: stability, causality, BIBO, time invariance,

linearity, memory-less

Convolution

• For an LTI system
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• y(t) = x(t)∗h(t)

• y[n] = x[n]∗h[n]

Sampling theorem

• Why sampling

• Sampling frequency greater than twice the maximum frequency in the

signal

• Aliasing

Fourier series and transform

• Continuous and Periodic: use FS

• Continuous and Non-periodic: use FT

• Discrete and Non-periodic: use DTFT

• Discrete and periodic: use DTFS

1.11.2 Unsolved example from [2]

Unsolved example 1.43

• A signalx(t) = 3cos(200t + π
6) is passed through a square law device.

Find the DC component and fundamental frequency

• Solution: We know cos2Θ = 1
2(cos2Θ+1)

y(t) = x2(t) = (3cos(200t +
π
6
))2
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y(t) = 9cos2(200t +
π
6
)

• We get

y(t) = 9/2cos(400t +
π
3

+1)

• DC component:9/2, Sinusoidal component:9/2cos(400t + π
3 Amplitude:9/2,

Fundamental frequency:200
π

Unsolved example 1.46

• Find the total energy of a raised-cosine pulse

x(t) =

{
1
2(cos(wt)+1), −π/w≤ t ≤ π/w

0, otherwise

• Solution: The energy is

E =
Z π/w

−π/w

1
4
(cos(wt)+1)2dt

• The energy is

E =
Z π/w

0

1
2
(cos2(wt)+2cos(wt)+1)dt

E =
1
2

Z π/w

0
(
1
2

cos(2wt)+
1
2

+2cos(wt)+1)dt

E =
1
2

3
2

π
w

= 3π/4w

Unsolved example 1.71

• Given a time varyingRC system. Is the system linear?
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Figure 1.79: Unsolved ex 1.52(e)x(t)y(2− t)
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Figure 1.80: Unsolved ex 1.52(g)x(t)y(2− t)

• Doubling the input results in doubling the output across capacitor.

Hence, the property of homogeneity is satisfied

• The property of superposition is also satisfied.

Unsolved ex. 2.41(b)

• GivenRC system, find the effect of ISI for the input sequence ”1110”

and ”1000”. Here ”1” is transmitted with the +ve pulse and ”0”with

the -ve pulse of durationT sec. AssumeRC = 1/T , RC = 5/T and

RC = 1/(5T ). The channel is an ideal channel (h(t) = δ(t))

• We have

x(t) = p(t)+ p(t−1)+ p(t−2)− p(t−3)
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Figure 1.81: For ”1110”, assumeT = 1, for RC = 1

Figure 1.82: For ”1110”, assumeT = 1, for RC = 5

y(t) = yp(t)+ yp(t−1)+ yp(t−2)+ yp(t−3)

• For ”1110”, assumeT = 1, for RC = 1

• For ”1110”, assumeT = 1, for RC = 5

• For ”1110”, assumeT = 1, for RC = 1/5

• For ”1000”, assumeT = 1, for RC = 1

• For ”1000”, assumeT = 1, for RC = 5

• For ”1000”, assumeT = 1, for RC = 1/5
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Figure 1.83: For ”1110”, assumeT = 1, for RC = 1/5

Figure 1.84: For ”1000”, assumeT = 1, for RC = 1

Figure 1.85: For ”1000”, assumeT = 1, for RC = 5
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Figure 1.86: For ”1000”, assumeT = 1, for RC = 1/5

Unsolved ex. 2.49

• For a given impulse response, determine whether the corresponding

system is

– memory-less: if and only ifh(t) = cδ(t)

– causal: if and only ifh(t) = 0 for t < 0

– stable: Stable if and only ifh(t) is bounded.

Unsolved ex. 2.49(b)

• h(t) = e−2tu(t−1)

• (i) has memory

• (ii) causal

• (iii) stable

Unsolved ex. 2.49(d)

• h(t) = 3δ(t)
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• (i) memory-less

• (ii) causal

• (iii) stable

Unsolved ex. 2.49(f)

• h[n] = (−1)nu[−n]

• (i) has memory

• (ii) not causal

• (iii) not stable

Unsolved ex. 2.51

• Suppose the multipath propagation model is generalized to ak-step

delay between the direct and reflected paths as shown by the input-

output equationy[n] = x[n] + ax[n− k] Find the impulse response of

the inverse system.

• Solution:

hinv[n]+ahinv[n− k] = δ[n]

hinv[0]+ahinv[−k] = 1]

• For the causal system

hinv[0] = 1

• Which meanshinv[n] is nonzero only for positive multiples ofk

hinv[n] =−ahinv[n− k]
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hinv[n] =
∞

∑
p=0

(−a)pδ[n− pk]]

Unsolved ex. 2.58(a)

Identify the natural response for the system:d
dt y(t)+10y(t)= 2x(t), y(0−)=

1, x(t) = u(t)

• r +10= 0 andr =−10

yn(t) = c1e−10t

y(0−) = 1 = c1

yn(t) = e−10t

Unsolved ex. 2.58(c)

Identify the natural response for the system:d2

dt2y(t) + 6 d
dt y(t) + 8y(t) =

2x(t), y(0−) =−1, d
dt y(t)|t=0− = 1,x(t) = e−tu(t)

• yn(t) = c1e−4tu(t)+ c2e−2tu(t)

y(0−) =−1 = c1+ c2 and d
dt y(t)|t=0− = 1 =−4c1−2c2

andc1 = 1
2,c2 =−3

2

yn(t) = 1
2e−4t− 3

2e−2t

Unsolved ex. 2.59

• Find the output of the system described by the difference equation with

input and initial conditionsy[n]− 1
2y[n−1] = 2x[n],y[−1] = 3,x[n] =

(− 1
2)

nu[n]

• Solution: Natural responsen≥ 0

r− 1
2

= 0 iand y(n)[n] = c(
1
2
)

n
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• Particular solution

y(p)[n] = k(− 1
2
)

nu[n]

k(− 1
2
)

n− 1
2

k(− 1
2
)

n−1
= (− 1

2
)

n

• We getk = 1

y(p)[n] = (− 1
2
)

nu[n]

• Translate initial conditions

7
2

= 1+ c

c =
5
2

• We getk = 1

y[n] = (− 1
2
)

nu[n]+
5
2
(
1
2
)

nu[n]

Unsolved example 2.65(a)

• Find the difference equation for the system

• f [n] =−2y[n]+ x[n],y[n] = f [n−1]+2 f [n] y[n] =−2y[n−1]+ x[n−
1]−4y[n]+2x[n] 5y[n]+2y[n−1] = x[n−1]+2x[n]

Unsolved example 2.65(b)

• Find the difference equation for the system

• f [n] = y[n]+ x[n−1], y[n] = f [n−1] = y[n−1]+ x[n−2]

Unsolved example 2.65(c)
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Figure 1.87: Unsolved example 2.65(a)

Figure 1.88: Unsolved example 2.65(b)

Figure 1.89: Unsolved example 2.65(c)
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• Find the difference equation for the system

• f [n] = x[n]−(1/8)y[n],y[n] = x[n−1]+ f [n−2] y[n]+(1/8)y[n−2] =

x[n−1]+ x[n−2]

Conclusions

• Unit I: Introduction

• Units II and III: Time domain Analysis

• Units IV, V, VI: Fourier representation

• Units VII, VIII: Z-domain Analysis
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